
∇SLAM: Automagically differentiable SLAM
https://gradslam.github.io

Krishna Murthy J.*1,2,3, Soroush Saryazdi∗4, Ganesh Iyer5, and Liam Paull†1,2,3,6

1Université de Montréal, 2Mila, 3Robotics and Embodied AI Lab (REAL), 4Concordia University,
5Carnegie Mellon University, 6Candian CIFAR AI Chair

Figure 1. ∇SLAM (gradSLAM) is a fully differentiable dense simultaneous localization and mapping (SLAM) system. The central
idea of ∇SLAM is to construct a computational graph representing every operation in a dense SLAM system. We propose differentiable
alternatives to several non-differentiable components of traditional dense SLAM systems, such as optimization, odometry estimation,
raycasting, and map fusion. This creates a pathway for gradient-flow from 3D map elements to sensor observations (e.g., pixels). We
implement differentiable variants of three dense SLAM systems that operate on voxels, surfels, and pointclouds respectively. ∇SLAM
thus is a novel paradigm to integrate representation learning approaches with classical SLAM.

Abstract
Blending representation learning approaches with si-

multaneous localization and mapping (SLAM) systems is
an open question, because of their highly modular and
complex nature. Functionally, SLAM is an operation that
transforms raw sensor inputs into a distribution over the
state(s) of the robot and the environment. If this transfor-
mation (SLAM) were expressible as a differentiable func-
tion, we could leverage task-based error signals to learn
representations that optimize task performance. How-
ever, several components of a typical dense SLAM sys-
tem are non-differentiable. In this work, we propose
∇SLAM (gradSLAM), a methodology for posing SLAM
systems as differentiable computational graphs, which uni-
fies gradient-based learning and SLAM. We propose differ-
entiable trust-region optimizers, surface measurement and
fusion schemes, and raycasting, without sacrificing accu-
racy. This amalgamation of dense SLAM with computa-
tional graphs enables us to backprop all the way from 3D
maps to 2D pixels, opening up new possibilities in gradient-
based learning for SLAM1.

TL;DR: We leverage the power of automatic differentia-
tion frameworks to make dense SLAM differentiable.

*Equal contribution
†No∇ students were harmed in the making of this work.
1Video abstract: https://youtu.be/2ygtSJTmo08

1. Introduction

Simultaneous localization and mapping (SLAM) has—
for decades—been a central problem in robot perception
and state estimation. A large portion of the SLAM litera-
ture has focused either directly or indirectly on the question
of map representation. This fundamental choice dramati-
cally impacts the choice of processing blocks in the SLAM
pipeline, as well as all other downstream tasks that depend
on the outpus of the SLAM system. Of late, gradient-based
learning approaches have transformed the outlook of several
domains (Eg. image recognition [24], language modeling
[42], speech recognition [17]). However, such techniques
have had limited success in the context of SLAM, primarily
since many of the elements in the standard SLAM pipeline
are not differentiable. A fully differentiable SLAM system
would enable task-driven representation learning since the
error signals indicating task performance could be back-
propagated all the way through the SLAM system, to the
raw sensor observations.

This is particularly true for dense 3D maps generated
from RGB-D cameras, where there has been a lack of con-
sensus on the right representation (pointclouds, meshes,
surfels, etc.). Several methods have demonstrated a ca-
pability for producing dense 3D maps from sequences of
RGB or RGB-D frames [21, 29, 44]. However, none of
these methods are able to solve the inverse mapping prob-

1

ar
X

iv
:1

91
0.

10
67

2v
3

 [
cs

.R
O

]
 1

9
N

ov
 2

02
0

https://gradslam.github.io
http://montrealrobotics.ca
https://youtu.be/2ygtSJTmo08

lem, i.e., answer the question: “How much does a specific
pixel-measurement contribute to the resulting 3D map"?
Formally, we desire an the expression that relates a pixel
in an image (or in general, a sensor measurement s) to a
3D map M of the environment. We propose to solve this
through the development of a differentiable mapping func-
tionM = GSLAM (s). Then the gradient of that mapping
∇sM can intuitively tell us that perturbing the sensor mea-
surement s by an infinitesimal δs causes the map M to
change by ∇sGSLAM (s)δs.

Central to our goal of realizing a fully differentiable
SLAM system are computational graphs, which underlie
most gradient-based learning techniques. We make the
observations that, if an entire SLAM system can be de-
composed into elementary operations, all of which are
differentiable, we could compose these elementary opera-
tions2 to preserve differentiability. However, modern dense
SLAM systems are quite sophisticated, with several non-
differentiable subsystems (optimizers, raycasting, surface
mapping), that make such a construct challenging.

We propose ∇SLAM (gradSLAM), a differentiable
computational graph view of SLAM. We show how all non-
differentiable functions in SLAM can be realised as smooth
mappings. First, we propose a differentiable trust region op-
timizer for nonlinear least squares systems. Building on it,
we present differentiable strategies of mapping, raycasting,
and global measurement fusion.

The ∇SLAM framework is very general, and can be
extended most dense SLAM systems for differentiability.
In Sec. 4, we provide three examples of SLAM systems
that can be realized as differentiable computation graphs:
implicit-surface mapping (Kinectfusion [29]), surfel-based
mapping (PointFusion [21]), and iterative closest point
(ICP) mapping (ICP-SLAM). We show that the differen-
tiable approaches maintain similar performance to their
non-differentiable counterparts, with the added advantage
that they allow gradients to flow through them.

To foster further research on differentiable SLAM sys-
tems and their applications to spatially-grounded learning,
∇SLAM is available as an open-source PyTorch frame-
work. Our project page and code can be accessed at
https://gradslam.github.io.

2. Related Work

Several works in recent years have applied recent ma-
chine learning advances to SLAM or have reformulated a
subset of components of the full SLAM system in a differ-
entiable manner.

2Again, using differentiable composition operators.

2.1. Learning-based SLAM approaches

There is a large body of work in deep learning-
based SLAM systems. For example, CodeSLAM [2] and
SceneCode [46] attempt to represent scenes using compact
codes that represent. 2.5D depth map. DeepTAM [47]
trains a tracking network and a mapping network, which
learn to reconstruct a voxel representation from a pair of
images. CNN-SLAM [40] extends LSD-SLAM [9], a pop-
ular monocular SLAM system, to use single-image depth
predictions from a convnet. Another recent trend has been
to try to formulate the SLAM problem over higher level fea-
tures such as objects, which may be detected with learned
detectors [45] [28] [32]. DeBrandandere et al. [3] perform
lane detection by backpropagating least squares residuals
into a frontend module. Recent work has also formulated
the passive [22] and active localization problems [4, 11] in
an end-to-end differentiable manner. While all of these ap-
proaches try to leverage differentiability in submodules of
SLAM systems (eg. odometry, optimization, etc.), there is
no single framework that models an entire SLAM pipeline
as a differentiable graph.

2.2. Differentiable visual odometry

The beginnings of differentiable visual odometry can be
traced back to the seminal Lucas-Kanade iterative matching
algorithm [27]. Kerl et al. [23]3 apply the Lucas-Kanade al-
gorithm to perform real-time dense visual odometry. Their
system is differentiable, and has been extensively used for
self-supervised depth and motion estimation [10, 26, 48].
Coupled with the success of Spatial Transformer Netowrks
(STNs) [20], several libraries (gvnn [15], kornia [34]) have
since implemented these techniques as differentiable layers,
for use in neural networks.

However, extending differentiability beyond the two-
view case (frame-frame alignment) is not straightforward.
Global consistency necessitates fusing measurements from
live frames into a global model (model-frame alignment),
which is not trivially differentiable.

2.3. Differentiable optimization

Some approaches have recently proposed to learn the
optimization of nonlinear least squares objective functions.
This is motivated by the fact that similar cost functions have
similar loss landscapes, and learning methods can help con-
verge faster, or potentially to better minima.

In BA-Net [39], the authors learn to predict the damping
coefficient of the Levenberg-Marquardt optimizer, while
in LS-Net [5], the authors entirely replace the Levenberg-
Marquard optimizer by an LSTM netowrk [18] that pre-
dicts update steps. In GN-Net [43], a differentiable ver-
sion of the Gauss-Newton loss is used to show better ro-

3The formulation first appeared in Steinbrüker et al. [37].

2

https://gradslam.github.io

bustness to weather conditions. RegNet [14] employs a
learning-based optimization approach based on photomet-
ric error for image-to-image pose registration. However, all
the aforementioned approaches require the training of addi-
tional neural nets and this requirement imposes severe lim-
itations on the generalizability. OptNet [1] introduces dif-
ferentiable optimization layers for quadratic programs, that
do not involve learnable parameters.

Concurrently, Grefenstette et al. [12] propose to unroll
optimizers as computational graphs, which allows for com-
putation of arbitrarily higher order gradients. Our proposed
differentiable Levenberg-Marquardt optimizer is similar in
spirit, with the addition of gating functions to result in better
gradient flows.

In summary, to the best of our knowledge, there is no
single approach that models the entire SLAM pipeline as a
differentiable model, and it is this motivation that underlies
∇SLAM.

3.∇SLAM

In this section we will overview our proposed method for
∇SLAM and also detail the individual differentiable sub-
components.

3.1. Preliminaries: Computational graphs

Figure 2. A computational graph. Nodes in red represent vari-
ables. Nodes in blue represent operations on variables. Edges
represent data flow. This graph computes the function 3(xy + z).
Dashed lines indicate (local, i.e., per-node) gradients in the back-
ward pass.

In gradient-based learning architectures, all functions
and approximators are conventionally represented as com-
putational graphs. Formally, a computation graph is a di-
rected acyclic graph G = (V, E), where each node v ∈ V
holds an operand or an operator, and each (directed) edge
e ∈ E indicates the control flow in the graph. Further, each
node in the graph also specifies computation rules for the
gradient of the outputs of the node with respect to the in-
puts to the node. Computational graphs can be nested and
composed in about any manner, whilst preserving differen-
tiability. An example computation graph for the function
3(xy + z) is shown in Fig. 2.

In a standard SLAM pipeline there are several subsys-
tems/components that are not differentiable (i.e., for a few

Figure 3. Computational graph for ∇LM

forward computations in the graph, gradients are unspeci-
fiable). For example, in the context of dense 3D SLAM
[29] [21], nonlinear least squares modules, raycasting rou-
tines, and discretizations are non-diffrentiable. Further, for
several operations such as index selection / sampling, gra-
dients exist, but are zero almost everywhere, which result in
extremely sparse gradient flows.

3.2. Method Overview

The objective of ∇SLAM is to make every computa-
tion in SLAM exactly realised as a composition of differ-
entiable functions4. Broadly, the sequence of operations in
dense SLAM systems can be termed as odometry estimation
(frame-to-frame alignment), map building (model-to-frame
alignment/local optimization), and global optimization. An
overview of the approach is shown in 1.

First, we provide a description of the precise issues
that render nearly all of the aforementioned modules non-
differentiable, and propose differntiable counterparts for
each module. Finally, we show that the proposed differen-
tiable variants allow the realization of several classic dense
mapping algorithms (KinectFusion [29], PointFusion [21],
ICP-SLAM) in the∇SLAM framework.5

3.3. ∇LM: A differentiable nonlinear least squares
solver

Most state-of-the-art SLAM solutions optimize nonlin-
ear least squares objectives to obtain local/globally consis-
tent estimates of the robot state and the map. Such ob-
jectives are of the form 1

2

∑
r(x)2, where r(x) is a non-

linear function of residuals. Example application scenar-
ios that induce this nonlinear least squares form include vi-
sual odometry, depth measurement registration (e.g., ICP),
and pose-graph optimization among others. Such objective
functions are minimized using a succession of linear ap-
proximations (r(x + δx)|x=x0 = r(x0) + J(x0)δx), us-
ing Gauss-Newton (GN) or Levenberg-Marquardt (LM)
solvers. GN solvers are extremely sensitive to intialization,
numerical precision, and moreover, provide no guarantees
on non-divergent behavior. Hence most SLAM systems use
LM solvers.

Trust-region methods (such as LM) are not differentiable

4Wherever exact differentiable realizations are not possible, we desire
as-exact-as-possible realizations.

5That is, realizable as fully differentiable computational graphs.

3

as at each optimization step, they involve recalibration of
optimizer parameters, based on a lookahead operation over
subsequent iterates [25]. Specifically, after a new iterate
is computed, LM solvers need to make a discrete decision
between damping or undamping the linear system. Fur-
thermore, when undamping, the iterate must be restored to
its previous value. This discrete switching behavior of LM
does not allow for gradient flow in the backward pass.

Figure 4. An example curve fitting problem, showing that ∇LM
performs near-identical to LM, with the added advantage of being
fully differentiable.

We propose a computationally efficient soft
reparametrization of the damping mechanism to en-
able differentiability in LM solvers. Our key insight is that,
if r0 = r(x0)Tr(x0) is the norm of the error at the current
iterate, and r1 = r(x1)Tr(x1) is the norm of the error
at the lookahead iterate, the value of r1 − r0 determines
whether to damp or to undamp. And, only when we choose
to undamp, we revert to the current iterate. We define
two smooth gating functions Qx and Qλ based on the
generalized logistic function [35] to update the iterate and
determine the next damping coefficient.

λ1 = Qλ(r0, r1) = λmin +
λmax − λmin

1 +De−σ(r1−r0)

Qx(r0, r1) = x0 +
δx0

1 + e−(r1−r0)

(1)

where D and σ are tunable parameters that control the
falloff [35]. Also [λmin, λmax] is the range of values the
damping function can assume. Notice that this smooth pa-
rameterization of the LM update allows the optimizer to
be expressed as a fully differentiable computational graph
(Fig. 3).

It must be noted that this scheme can be modified to ac-
commodate other kinds of gating functions, such as hyper-
bolic curves. We however, choose the above gating func-
tions, as they provide sufficient flexibility. A thorough treat-
ment of the impact of the choice of gating functions on per-
formance is left for future work.

3.4. Differentiable mapping

Another non-smooth operation in dense SLAM is map
construction (surface measurement). For example, consider

M

I

project M to I

intersect

Ma

Pa

soft association exp(− r(Pvalid)
2

2σ2)

K(Pa) Pvalid

update surface measurement

map fusion

Figure 5. Computation graph for the differentiable mapping
module. The uncolored boxes indicate intermediate variables,
while the colored boxes indicate processing blocks. Note that
the specific choice of the functions for update surface
measurement and map fusion depend on the map represen-
tation used.

a global map M being built in the reference frame of the
first image-sensor measurement I0. When a new frame Ik
arrives at time k, dense SLAM methods need to align the
surface measurement being made in the live frame, with the
map M. Notwithstanding the specific choice of map rep-
resentation (i.e., pointclouds, signed-distances, surfels), a
generic surface alignment process comprises the following
steps.

1. The mapM is intersection-tested with the live frame,
to determine the active set Ma of map elements, and
the active set of image pixels Pa. The remaing map
elements are clipped.

2. Active image pixels Pa are checked for measurement
validity (e.g., missing depth values / blurry pixels,
etc.). This results in a valid active set of image pixls
Pvalid

3. The set of pixels in Pvalid is backprojected to 3D and
compared with the map. At this stage, it must be dis-
cerned whether these pixels measure existing elements
inMa, or if they measure a new set of elements that
need to be added to the global map.

4. Once the above decision is made, these surface mea-
surements are fused into the global map. The choice
of the fusion mechanism is dependent on the underly-
ing representation of each map element (points, sur-
fels, TSDF, etc.).

The above process involves a number of differentiable
yet non-smooth operations (clipping, indexing, threshold-
ing, new/old decision, active/inactive decision, etc.). Al-
though the above sequence of operations can be represented
as a computation graph, it will not necessarily serve our
purpose here since, even though (local) derivatives can be
defined for operations such as clipping, indexing, thresh-
olding, and discrete decisions, these derivatives exist only
at that single point. The overall function represented by
the computation graph will have undefined gradients "al-
most everywhere" (akin to step functions). We propose to
mitigate this issue by making the functions locally smooth.
Concretely, we propose the following corrective measures.

4

1. The surface measurement made by each valid pixel p
in the live frame (i.e., p ∈ Pvalid) is not a function of
p alone. Rather, it is the function of the pixel p and its
(active/inactive) neighbours nbd(p), as determined by
a kernel K(p, nbd(p)).

2. When a surface measurement is transformed to the
global frame, rather than using a hard (one-one) as-
sociation between a surface measurement and a map
element, we use a soft association to multiple map el-
ements, in accordance with the sensor characteristics.

3. Every surface measurement is, by default, assumed to
represent a new map element, which is passed to a dif-
ferentiable fusion step (c.f . Sec 3.5).

The kernel K(p, nbd(p)) can be a discrete approxima-
tion (e.g., constant within a pixel) or can vary at the sub-
pixel level, based on the choice of the falloff function. For
faster computation and coarse gradients, we use a bilinear
interpolation kernel. While bilinear interpolation is a sen-
sible approximation for image pixels, this is often a poor
choice for use in 3D soft associations. For forming 3D as-
sociations, we leverage characteristics of RGB-D sensors in
defining the soft falloff functions. Specifically, we compute,
for each point P in the live surface measurement, a set of
closest candidate points in a region exp

(
− r(P)2

2σ2

)
, where

r(P) is the radial depth of the point from the camera ray,
and σ affects the falloff region.6

3.5. Differentiable map fusion

The aforementioned differentiable mapping strategy,
while providing us with a smooth observation model, also
causes an undesirable effect: the number of map elements
increases in proportion with exploration time. However,
map elements should ideally increase with proportion to the
explored volume of occupied space, rather than with explo-
ration time. Conventional dense mapping techniques (e.g.,
KinectFusion [29], PointFusion [21]) employ this through
fusion of redundant observations of the same map element.
As a consequence, the recovered map has a more manage-
able size, but more importantly, the reconstruction quality
improves greatly. While most fusion strategies are differ-
entiable (eg. [21, 29]), they impose falloff thresholds that
cause an abrupt change in gradient flow at the truncation
point. We use a logistic falloff function, similar to Eq. 1, to
ease gradient flow through these truncation points.

3.6. Differentiable ray backprojection

Some dense SLAM systems [29,44] perform global pose
estimation by raycasting a map to a live frame. Such an op-
eration inherently involves non-differentiable steps. First,

6This is a well-known falloff function, usually with Kinect-style depth
sensors [6, 21, 30].

pc

Rc

d(pc)

intersect (pc,M)

vc

Φ(Vc)

N (d(pc), σr)

σr

Figure 6. Ray differentials: Inset shows the computation graph of
the ray value computation. The dashed rectangle is not differen-
tiable, and its derivatives are approximated as shown in Eq 2

from each pixel in the image, a ray from the camera is
backprojected, and its intersection with the first map ele-
ment along the direction of the ray is determined. This in-
volves marching along the ray until a map element is found,
or until we exit the bounds of reconstruction. Usual (non-
differentiable) versions of ray marching use max-min accel-
eration schemes [31] or rely on the existence of volumetric
signed distance functions [29]. Several attempts have been
made to make the raycasting operation differentiable. Scene
representation networks [36] proposes to predict ray march-
ing steps using an LSTM. In other works such as DRC [41]
and WS-GAN [13], the authors pool over all voxels along
a ray to compute the potential of a ray. In this work, we
make one enhancement to the ray pooling operation. We
pool over all voxels along a ray, but have a Gaussian falloff
defined around the depth measurement of the image pixel
through which the ray passes. Further, we use finite dif-
ferences to compute the derivative of the ray potential with
respect to the pixel neighbourhood. We use the finite differ-
ences based ray differentials defined in Igehy et al. [19]. If
pc is the image pixel that the ray Rc pierces, and Vc = {vc}
is the set of all voxels it pierces, then the aggregated value
of the ray is denoted vc (with respect to an aggregation
function Φ(ψ(vc) ∀vc ∈ Vc)). The aggregation function
simply multiplies each value ψ(vc) with the density of the
Gaussian fallof at vc, and normalizes them. Similarly vl, vr,
vu, and vb are the aggregated values of rays emanating from
the pixels to the left, right, above, and below pc respectively.
Then, the partial derivative ∂vc

∂c can be approximated as

5

∂vc
∂pc

=

(
(vr − vl)/2
(vu − vd)/2

)
(2)

An illustration of the ray differential computation
scheme can be found in Fig. 6.

4. Case Studies: KinectFusion, PointFusion,
and ICP-SLAM

To demonstrate the applicability of the ∇SLAM frame-
work, we leverage the differentiable computation graphs
specified in Sec 3 and compose them to realise three practi-
cal SLAM solutions. In particular, we implement differen-
tiable versions of the KinectFusion [29] algorithm that con-
structs TSDF-based volumetric maps, the PointFusion [21]
algorithm that constructs surfel maps, and a pointcloud-only
SLAM framework that we call ICP-SLAM.

4.1. KinectFusion

Recall that KinectFusion [29] alternates between track-
ing and mapping phases. In the tracking phase, the entire
up-to-date TSDF volume is raycast onto the live frame, to
enable a point-to-plane ICP that aligns the live frame to the
raycast model. Subsequently, in the mapping phase, surface
measurements from the current frame are fused into the vol-
ume, using the TSDF fusion method proposed in [29]. The
surface measurement is given as (c.f . [29])

sdf(p) = trunc(‖K−1x‖−1
2 ‖t− p‖2 − depth(x))

trunc(sdf) = min(1,
sdf

µ
)(sign(sdf)) iff sdf ≥ −µ

(3)

Here, p is the location of a voxel in the camera frame, and
x = bπ(Kp)c is the live frame pixel to which p projects
to. µ is a parameter that determines the threshold beyond
which a surface measurement is invalid. However, we note
that the floor operator is non-differentiable "almost every-
where". Also, the truncation operator, while differentiable
within a distance of µ from the surface, is abruptly trun-
cated, which hinders gradient flow . Instead, we again use a
generalized logistic function [35] to create a smooth trunca-
tion, which provides better-behaved gradients at the trunca-
tion boundary. The other steps involved here, such as ray-
casting, ICP, etc. are already differentiable in the ∇SLAM
framework (c.f . Sec 3). Fusion of surface measurements
is perfomed using the same approach as in [29] (weighted
averaging of TSDFs).

4.2. PointFusion

As a second example, we implement PointFusion [21],
which incrementally fuses surface measurements to obtain
a global surfel map. Surfel maps compare favourably to

volumetric maps due to their reduced memory usage.7 We
closely follow our differentiable mapping formulation (c.f .
Sec 3.4) and use surfels as map elements. We adopt the
fusion rules from [21] to perform map fusion.

4.3. ICP-SLAM

As a baseline example, we implement a simple point-
cloud based SLAM technique, which uses ICP to incremen-
tally register pointclouds to a global pointcloud set. In par-
ticular, we implement two systems. The first one aligns ev-
ery pair of consecutive incoming frames, to obtain an odom-
etry estimate (also referred to as frame-to-frame alignment
or ICP-Odometry). The second variant performs what we
call frame-to-model alignment (ICP-SLAM). That is, each
incoming frame is aligned (using ICP) with a pointcloud
containing the entire set of points observed thus far.

5. Experiments and results

5.1. Differentiable optimization

In Sec 3.3, we introduced two generalized logistic func-
tions Qλ and Qx to compute the damping functions as well
as the subsequent iterates. We conduct multiple experi-
ments to verify the impact of this approximation on the per-
formance (convergence speed, quality of solution) of non-
linear least squares solvers.

We first design a test suite of nonlinear curve fitting prob-
lems (inspiration from [5]), to measure the performance of
∇LM to its non-differentiable counterpart. We consider
three nonlinear functions, viz. exponential, sine, and sinc,
each with three parameters a, t, and w.

f(x) = a exp

(
− (x− t)2

2w2

)
f(x) = sin(ax+ tx+ w)

f(x) = sinc(ax+ tx+ w)

(4)

For each of these functions, we uniformly sample the
parameters p = {a, t, w} to create a suite of ground-
truth curves, and uniformly sample an initial guess p0 =
{a0, t0, w0} in the interval [−6, 6]. We sample 100 problem
instances for each of the three functions. We run a variety of
optimizers (such as gradient descent (GD), Gauss-Newton
(GN), LM, and ∇LM) for a maximum of 10, 50, and 100
iterations. We compute the mean squared error in parame-
ter space (independently for each parameter a, t, w) as well
as in function space (i.e., ‖f(x)pred − f(x)gt‖2. Note that
these two errors are not necessarily linearly related, as the
interaction between the parameters and the function vari-
ables are highly nonlinear. The results are presented in Ta-

7On the flipside, surfel-based algorithms are harder to parallelize com-
pared to volumetric fusion.

6

Tmax = 10 iters Exponential Sine Sinc
GD GN LM ∇LM GD GN LM ∇LM GD GN LM ∇LM

‖apred − agt‖2 0.422 0.483 0.483 0.483 0.379 0.341 0.342 0.342 2.929 0.304 0.304 0.304
‖tpred − tgt‖2 0.606 0.50 0.550 0.550 0.222 0.359 0.360 0.360 3.024 0.304 0.304 0.040
‖wpred − wgt‖2 1.268 0.667 0.075 0.075 1.215 0.080 0.084 0.085 0.462 10−7 0.023 10−4

‖f(x)pred − f(x)gt‖2 0.716 0.160 0.163 0.160 0.666 0.148 0.152 0.148 0.700 5× 10−8 0.005 4× 10−5

Tmax = 50 iters
‖apred − agt‖2 0.365 0.275 0.231 0.275 0.486 0.429 0.434 0.434 3.329 0.380 0.380 0.380
‖tpred − tgt‖2 0.263 0.219 0.231 0.218 0.519 0.455 0.459 0.460 2.739 0.380 0.380 0.380
‖wpred − wgt‖2 1.220 0.205 0.007 0.369 1.327 0.273 0.376 0.383 0.383 2× 10−7 0.202 4× 10−5

‖f(x)pred − f(x)gt‖2 0.669 0.083 0.004 0.078 0.673 0.153 0.153 0.151 0.795 2× 10−7 0.005 3× 10−5

Tmax = 100 iters
‖apred − agt‖2 0.431 0.475 0.480 0.487 0.486 0.429 0.434 0.434 2.903 0.196 0.196 0.196
‖tpred − tgt‖2 0.466 0.311 0.378 0.323 0.519 0.455 0.459 0.460 2.847 0.196 0.196 0.196
‖wpred − wgt‖2 1.140 0.364 0.066 0.065 1.327 0.273 0.376 0.382 0.601 10−7 0.026 9× 10−5

‖f(x)pred − f(x)gt‖2 0.662 0.243 0.162 0.230 0.673 0.153 0.153 0.151 0.707 6× 10−8 0.005 4× 10−5

Table 1. ∇LM performs quite similarly to its non-differentiable counterpart, on a variety of non-linear functions, and at various stages of
optimization. Here, GD, GN, and LM refer to gradient descent, Gauss-Newton, and Levenberg-Marquardt optimizers respectively.

ble 4.3. It can be seen that ∇LM performs near-identically
to LM.

5.2. Comparitive analysis of case studies

In Sec 4, we implemented KinectFusion [29], PointFu-
sion [21], and ICP-SLAM as differentiable computational
graphs. Here, we present an analysis of how each of the ap-
proaches compare to their non-differentiable counterparts.
Table 2 shows the trajectory tracking performance of the
non-differentiable and differentiable (∇) versions of ICP-
Odometry, ICP-SLAM, and PointFusion. We observe no
virtual change in performance when utilizing the differen-
tiable mapping modules and∇LM for optimization. This is
computed over split subsets of the living_room_traj0
sequence.

We also evaluate the reconstruction quality of ∇-
KinectFusion with that of Kintinuous [44]. On a subsec-
tion of the living_room_traj0 sequence of the ICL-
NUIM [16] benchmark, the surface reconstruction quality
of Kintinuous is 18.625, while that of differentiable Kinect-
Fusion is 21.301 (better). However, this quantity is mis-
leading, as Kintinuous only retains a subset of high confi-
dence points in the extracted mesh, while our differentiable
KinectFusion outputs (see Fig. 8) contain a few noisy arti-
facts, due to our smooth truncation functions.

5.3. Qualitative results

∇SLAM works out of the box on multiple other RGB-
D datasets. Specifically, we present qualitative results of
running our differentiable SLAM systems on RGB-D se-
quences from the TUM RGB-D dataset [38], ScanNet [7],
as well as on an in-house sequence captured from an Intel
RealSense D435 camera.

Fig. 9- 11 show qualitative results obtained by running
∇SLAM on a variety of sequences from the TUM RGB-

Method ATE RPE
ICP-Odometry (non-differentiable) 0.029 0.0318

∇ICP-Odometry 0.01664 0.0237
ICP-SLAM (non-differentiable) 0.0282 0.0294

∇ICP-SLAM 0.01660 0.0204
PointFusion (non-differentiable) 0.0071 0.0099

∇PointFusion 0.0072 0.0101
KinectFusion (non-differentiable) 0.013 0.019

∇KinectFusion 0.016 0.021
Table 2. Performance of ∇SLAM. The differentiable counter-
parts perform nearly similar to their non-differentiable counter-
parts (ATE: Absolute Trajectory Error, RPE: Relative Pose Error).

D benchmark (Fig. 9), ScanNet (Fig. [7]), and an in-house
sequence (Fig. 11). These differentiable SLAM systems
all execute fully on the GPU, and are capable of comput-
ing gradients with respect to any intermediate variable (Eg.
camera poses, pixel intensities/depths, optimization param-
eters, camera intrinsics, etc.).

5.4. Analysis of Gradients

The computational graph approach of ∇SLAM allows
us to recover meaningful gradients of 2D (or 2.5D) mea-
surements with respect to a 3D surface reconstruction. In
Fig. 12, the top row shows an RGB-D image differentiably
transformed—using ∇SLAM—into a (noisy) TSDF sur-
face measurement, and then compared to a more precise
global TSDF map. Elementwise comparision of aligned
volumes gives us a reconstruction error, whose gradients
are backpropagated through to the input depthmap using
the computational graph maintained by ∇SLAM (and vi-
sualized in the depth image space). In the second row, we
intentionally introduce an occluder that masks out a small
(40× 40) region in the RGB-D image, thereby introducing
a reconstruction artifact. Computing the volumetric error

7

Figure 7. ∇LM performs comparably to LM optimizers. In this figure, we show example curve fitting problems from the test suite.

KinectFusion PointFusion ICP-Odometry ICP-SLAM

Figure 8. Qualitative results: On the living room lr kt0 sequence of the ICL-NUIM dataset [16]. The reconstructions are near-
identical to their non-differentiable counterparts. However, distinct from classic SLAM approaches, these reconstructions allow for gradi-
ents to flow from a 3D map element all the way to the entire set of pixel-space measurements of that element.

Figure 9. Reconstruction obtained upon running the dif-
ferentiable ICP-Odometry pipeline on a subsection of the
rgbd_dataset_freiburg1_xyz sequence.

between the global and local occluded TSDF volumes and
inspecting the gradients with respect to the input indicates
the per pixel contribution of the occluding surface to the
volumetric error. Thus, ∇SLAM provides a rich interpreta-
tion of the computed gradients: they denote the contribution
of each pixel towards the eventual 3D reconstruction.

5.5. Application: RGB and depth completion

In Fig. 13, we similarly introduce such occluders (top
row) and pixel noise (bottom row) in one of the depth

maps of a sequence and reconstruct the scene using
∇PointFusion. We then calculate the chamfer distance be-
tween the noisy and true surfel maps and backpropogate the
error with respect to each pixel. The minimized loss leads to
the targeted recovery of the noisy and occluded regions. We
additionally show an RGB-D image completion task (from
uniform noise)in Fig. 14.

6. Conclusion
We introduce ∇SLAM, a differentiable computational

graph framework that enables gradient-based learning for
a large set of localization and mapping based tasks, by pro-
viding explicit gradients with respect to the input image and
depth maps. We demonstrate a diverse set of case stud-
ies, and showcase how the gradients propogate throughout
the tracking, mapping, and fusion stages. Future efforts
will enable ∇SLAM to be directly plugged into and op-
timized in conjunction with downstream tasks. ∇SLAM
can also enable a variety of self-supervised learning appli-
cations, as any gradient-based learning architecture can now
be equipped with a sense of spatial understanding.

References
[1] Brandon Amos and J. Zico Kolter. OptNet: Differentiable

optimization as a layer in neural networks. In ICML, 2017.
3

[2] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan
Leutenegger, and Andrew J Davison. Codeslam—learning

8

Figure 10. Qualitative results on sequences from the ScanNet [7] dataset. Owing to GPU memory constraints, we use each of the
differentiable SLAM systems (∇KinectFusion, ∇PointFusion, and ∇ICP-SLAM) to reconstruct parts of the scene. We also show outputs
from BundleFusion [8] for reference.

Figure 11. In-house sequence collected from an Intel RealSense D435 camera. The reconstruction (right) is obtained by running
∇PointFusion. Note that we do not perform any noise removal. Differentiable noise filtering is left for future work.

9

Difference in gradients
Backprop

Compare

Compare
Backprop

Figure 12. Analysis of gradients: ∇SLAM enables gradients to flow all the way back to the input images. Top: An RGB-D image pair
(depth not shown) is passed through ∇SLAM, and reconstruction error is computed using a precise fused map. Backpropagation passes
these gradients all the way back to the depth map (blue map). Bottom: An explicit occluder added to the center of the RGB-D pair. This
occluder distorts the construction by creating a gaping hole through it. But, using the backpropagated gradients, one can identify the set of
image/depthmap pixels that result in a particular area to be reconstructed imperfectly.

Figure 13. End-to-end gradient propagation: (Top): A chunk of a depth map is chopped. The resultant sequence is reconstructed
using ∇PointFusion and the pointcloud is compared to a clean one reconstructed using the unmodified depth map. The Chamfer distance
between these two pointclouds is used to define a reconstruction error between the two clouds, which is backpropagated through to the
input depth map and updated by gradient descent. (Bottom): Similar to the Fig. 12, we show that ∇SLAM can fill-in holes in the depthmap
by leveraging multi-view gradient information.

Figure 14. RGB-D completion using end-to-end gradient propagation: Three RGB-D images and a noise image are passed through
∇PointFusion, and compared to a clean reconstruction obtained from four RGB-D images. The reconstruction loss is used to optimize the
noise image by gradient descent. We can recover most of the artifacts from the raw RGB and depth images. Note that finer features are
hard to recover from a random initialization, as the overall SLAM function is only locally differentiable.

10

a compact, optimisable representation for dense visual slam.
In CVPR, 2018. 2

[3] Bert De Brabandere, Wouter Van Gansbeke, Davy Neven,
Marc Proesmans, and Luc Van Gool. End-to-end lane de-
tection through differentiable least-squares fitting. CoRR,
abs/1902.00293, 2019. 2

[4] Devendra Singh Chaplot, Emilio Parisotto, and Ruslan
Salakhutdinov. Active neural localization. In International
Conference on Learning Representations, 2018. 2

[5] Ronald Clark, Michael Bloesch, Jan Czarnowski, Stefan
Leutenegger, and Andrew J Davison. Ls-net: Learning to
solve nonlinear least squares for monocular stereo. ECCV,
2018. 2, 6

[6] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303–312, 1996. 5

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 7, 9, 12

[8] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. ACM Transactions on Graphics 2017 (TOG),
2017. 9

[9] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In ECCV, 2014. 2

[10] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian
Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In ECCV, 2016. 2

[11] S. K. Gottipati, K. Seo, D. Bhatt, V. Mai, K. Murthy, and L.
Paull. Deep active localization. IEEE Robotics and Automa-
tion Letters, 4(4):4394–4401, Oct 2019. 2

[12] Edward Grefenstette, Brandon Amos, Denis Yarats,
Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe
Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized
inner loop meta-learning. arXiv preprint arXiv:1910.01727,
2019. 3

[13] JunYoung Gwak, Christopher B Choy, Manmohan Chan-
draker, Animesh Garg, and Silvio Savarese. Weakly super-
vised 3d reconstruction with adversarial constraint. In 2017
International Conference on 3D Vision (3DV), 2017. 5

[14] Lei Han, Mengqi Ji, Lu Fang, and Matthias Nießner. Reg-
net: Learning the optimization of direct image-to-image pose
registration. CoRR, abs/1812.10212, 2018. 3

[15] Ankur Handa, Michael Bloesch, Viorica Pătrăucean, Simon
Stent, John McCormac, and Andrew Davison. gvnn: Neural
network library for geometric computer vision. In ECCV
Workshop on Geometry Meets Deep Learning, 2016. 2

[16] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A
benchmark for RGB-D visual odometry, 3D reconstruction
and SLAM. In ICRA, 2014. 7, 8, 12

[17] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep

neural networks for acoustic modeling in speech recognition.
IEEE Signal processing magazine, 2012. 1

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9:1735–80, 12 1997. 2

[19] Homan Igehy. Tracing ray differentials. In Proceedings of
the 26th annual conference on Computer graphics and in-
teractive techniques, pages 179–186. ACM Press/Addison-
Wesley Publishing Co., 1999. 5

[20] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Neurips, 2015. 2

[21] Maik Keller, Damien Lefloch, Martin Lambers, Shahram
Izadi, Tim Weyrich, and Andreas Kolb. Real-time 3d re-
construction in dynamic scenes using point-based fusion. In
2013, 2013. 1, 2, 3, 5, 6, 7, 12

[22] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
Posenet: A convolutional network for real-time 6-dof camera
relocalization. In ICCV, 2015. 2

[23] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Robust
odometry estimation for rgb-d cameras. In ICRA, 2013. 2,
12

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 1

[25] Michael Lampton. Damping–undamping strategies for the
levenberg–marquardt nonlinear least-squares method. Com-
puters in Physics, 1997. 4

[26] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu.
Undeepvo: Monocular visual odometry through unsuper-
vised deep learning. In ICRA, 2018. 2

[27] Bruce D Lucas, Takeo Kanade, et al. An iterative image
registration technique with an application to stereo vision,
1981. 2

[28] B. Mu, S. Liu, L. Paull, J. Leonard, and J. P. How. Slam with
objects using a nonparametric pose graph. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 4602–4609, Oct 2016. 2

[29] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In ISMAR, 2011. 1, 2, 3, 5, 6, 7, 12, 13

[30] Chuong V Nguyen, Shahram Izadi, and David Lovell. Mod-
eling kinect sensor noise for improved 3d reconstruction and
tracking. In 2012 second international conference on 3D
imaging, modeling, processing, visualization & transmis-
sion. IEEE, 2012. 5

[31] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and P-P Sloan. Interactive ray tracing for isosurface render-
ing. In Proceedings Visualization’98 (Cat. No. 98CB36276),
pages 233–238. IEEE, 1998. 5

[32] P. Parkhiya, R. Khawad, J. K. Murthy, B. Bhowmick, and
K. M. Krishna. Constructing category-specific models for
monocular object-slam. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1–9, May
2018. 2

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

11

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch, 2017. 12

[34] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Winter Conference
on Applications of Computer Vision, 2020. 2

[35] FJ Richards. A flexible growth function for empirical use.
Journal of experimental Botany, 1959. 4, 6

[36] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems, 2019. 5

[37] Frank Steinbrücker, Jürgen Sturm, and Daniel Cremers.
Real-time visual odometry from dense rgb-d images. In
ICCV Workshops, 2011. 2

[38] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), 2012. 7, 12

[39] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle ad-
justment network. ICLR, 2019. 2

[40] K. Tateno, F. Tombari, I. Laina, and N. Navab. Cnn-slam:
Real-time dense monocular slam with learned depth predic-
tion. In CVPR, 2017. 2

[41] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In CVPR, 2017.
5

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1

[43] Lukas von Stumberg, Patrick Wenzel, Qadeer Khan, and
Daniel Cremers. Gn-net: The gauss-newton loss for deep
direct SLAM. CoRR, abs/1904.11932, 2019. 2

[44] Thomas Whelan, Michael Kaess, Hordur Johannsson, Mau-
rice Fallon, John J Leonard, and John McDonald. Real-time
large-scale dense rgb-d slam with volumetric fusion. The In-
ternational Journal of Robotics Research, 34(4-5):598–626,
2015. 1, 5, 7

[45] S. Yang and S. Scherer. Cubeslam: Monocular 3-d object
slam. IEEE Transactions on Robotics, 35(4):925–938, Aug
2019. 2

[46] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and
Andrew J Davison. Scenecode: Monocular dense semantic
reconstruction using learned encoded scene representations.
In CVPR, 2019. 2

[47] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In ECCV, 2018. 2

[48] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, 2017. 2

A.∇SLAM: Library
In this paper, we demonstrated that classical dense

SLAM systems such as KinectFusion [29], PointFusion
[21], and ICP-SLAM can all be realized as differentiable

computations. However, the set of differentiable modules
introduced herein can be used to construct several newer
differentiable SLAM systems. To this end, we intend to
make the ∇SLAM framework publicly available as open-
source software.
∇SLAM is built on top of PyTorch [33], a reverse-mode

automatic differentiation library that supports computation
over multi-dimensional arrays (often misnomered tensors).
At the time of writing this article, ∇SLAM supports the
following functionality8:

1. Non-linear least squares optimization

2. Depth-based perspective warping (dense visual odom-
etry [23])

3. Point-to-plane ICP

4. Raycasting

5. TSDF volumetric fusion

6. PointFusion (surfel map building)

7. ICP-SLAM

8. Boilerplate operations (Lie algebraic utilities, differen-
tiable vertex and normal map computation, etc.)

∇SLAM is intended to be an out-of-the-box PyTorch-
based SLAM framework. Currently, it interfaces with pop-
ular datasets such as ScanNet [7], TUM RGB-D bench-
mark [38], and ICL-NUIM [16]. Currently, low resolution
reconstructions (for example, a 128 × 128 × 128 TSDF
volume run at about 10Hz on a medium-end laptop GPU
(NVIDIA GeForce 1060).

For more details on release timelines, and for more visu-
alizations/results, one can visit this webpage.

B. Frequently asked questions (FAQ)
1. Q: So, ∇SLAM is just classical dense SLAM,

implemented using an autograd-compatible lan-
guage/library?
A: Yes and no. Technically, while it is possible
to “simply" implement dense SLAM in an autograd-
compatible library (eg. PyTorch [33]), in such a
case the obtained gradients would not be meaning-
ful enough, to be used in a gradient-based learning
pipeline. We believe that ∇SLAM addresses many
such problems (of the gradients being zero “almost ev-
erywhere", akin to impulse functions).

2. Q: The paper paints a rosy side of ∇SLAM. What are
some of the shortcomings of the framework?

8All of these operations are performed fully differentiably.

12

http://montrealrobotics.ca/gradSLAM

A: Unrolling each computation in dense SLAM as a
graph requires an enormous amount of memory. For
example, running a differentiable KinectFusion [29]
algorithm using a coarse voxel resolution 128× 128×
128 ends up requiring 6GB of GPU memory on av-
erage. This severely restricts the size of scenes that
can be reconstructed in this framework. That is one
of the primary concerns we are tackling at the mo-
ment. Another aspect of ∇SLAM we are improving
upon is to add more robust (differentiable) filters into
several stages of the pipeline, such as ICP, photomet-
ric warping, etc. We are also working on getting in
M-estimators into the optimization routine.

3. Q: What is the application of such a system? A:
We envisage a plethora of applications for a differen-
tiable SLAM system, ranging from enabling spatially-
grounded learning, to self-supervision, to task-oriented
learning and beyond. We believe that∇SLAM greatly
benefits by following the same modular structure as
conventional SLAM systems. This could potentially
allow localized learning in only submodules of a
SLAM system that actually need to be learnt.

C. Acknowledgements

The authors thank Gunshi Gupta for helping out with
some of the ∇LM experiments. KM would like to thank
Ankur Handa for providing valuable feedback/advice on
this work. KM also thanks Zeeshan Zia, Ronald Clark,
and Sajad Saeedi, who participated in the initial brainstorm-
ing sessions. KM and GI acknowledge timely help from
Aaditya Saraiya, Parv Parkhiya, Akshit Gandhi, Shubham
Garg, all from CMU, who helped capture a live sequence
that features in the ∇SLAM video. During the early stages
of the project, KM benefitted from participating in brain-
storming sessions with Tejas Khot and Gautham Swami-
nathan. The authors acknowledge the impact of the feed-
back from colleagues at the Robotics and Embodied AI Lab
(REAL), Université de Montréal on this work; in particular,
Gunshi Gupta, Bhairav Mehta, and Mark Van der Merwe.

D. Contributions

Krishna Murthy Jatavallabhula came up with this
idea, inspired by an unrelated question on one of his all-
nighter coding projects he chose to put up on GitHub
https://github.com/krrish94/dvo_python. He implemented
initial prototypes and played a wrote large parts of the pa-
per.

Soroush Saryazdi led the development of the gradslam
library. Although he only joined aboard after our ICRA
2020 submission, he was extremely enthusiastic about the
project and was instrumental in its release.

Ganesh Iyer ran several experiments and implemented
differentiable ICP and PointFusion pipelines. He led several
interesting discussions on follow-up work, and contributed
to shaping the core ideas of gradslam.

Liam Paull was the ideal advisor on this project. He
supported the rest of us by inspiring us to push harder, and
by instilling the spirit of slow science. He wrote a majority
of this paper!

13

https://github.com/krrish94/dvo_python

