Taskography: Evaluating robot task planning over large 3D scene graphs

Taskography - benchmarking robot task planning over large 3D scene graphs

Abstract

3D scene graphs (3DSGs) are an emerging description; unifying symbolic, topological, and metric scene representations. However, typical 3DSGs contain hundreds of objects and symbols even for small environments; rendering task planning on the \emph{full} graph impractical. We construct \textbf{Taskography}, the first large-scale robotic task planning benchmark over 3DSGs. While most benchmarking efforts in this area focus on \emph{vision-based planning}, we systematically study \emph{symbolic} planning, to decouple planning performance from visual representation learning. We observe that, among existing methods, neither classical nor learning-based planners are capable of real-time planning over \emph{full} 3DSGs. Enabling real-time planning demands progress on \emph{both} (a) sparsifying 3DSGs for tractable planning and (b) designing planners that better exploit 3DSG hierarchies. Towards the former goal, we propose \textbf{Scrub}, a task-conditioned 3DSG sparsification method; enabling classical planners to match (and surpass) state-of-the-art learning-based planners. Towards the latter goal, we propose \textbf{Seek}, a procedure enabling learning-based planners to exploit 3DSG structure, reducing the number of replanning queries required by current best approaches by an order of magnitude. We will open-source all code and baselines to spur further research along the intersections of robot task planning, learning and 3DSGs.

Publication
In Conference on Robot Learning
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Click the Slides button above to demo Academic’s Markdown slides feature.

Supplementary notes can be added here, including code and math.

Liam Paull
Assistant Professor

I lead the Montreal robotics and embodied AI lab. I am affiliated with Université de Montréal, Mila, and I hold a CIFAR AI chair.

Florian Shkurti
Assistant Professor
comments powered by Disqus

Related