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Résumé

L’intelligence artificielle (IA) moderne a ouvert de nouvelles perspectives prometteuses pour
la création de robots intelligents. En particulier, les architectures d’apprentissage basées sur
le gradient (réseaux neuronaux profonds) ont considérablement amélioré la compréhension
des scènes 3D en termes de perception, de raisonnement et d’action. Cependant, ces progrès
ont affaibli l’attrait de nombreuses techniques “classiques” développées au cours des dernières
décennies. Nous postulons qu’un mélange de méthodes “classiques” et “apprises” est la
voie la plus prometteuse pour développer des modèles du monde flexibles, interprétables et
exploitables : une nécessité pour les agents intelligents incorporés.

La question centrale de cette thèse est : “Quelle est la manière idéale de combiner les
techniques classiques avec des architectures d’apprentissage basées sur le gradient pour une
compréhension riche du monde 3D ?”. Cette vision ouvre la voie à une multitude d’applications
qui ont un impact fondamental sur la façon dont les agents physiques perçoivent et interagissent
avec leur environnement. Cette thèse, appelée “programmes différentiables pour modèler
l’environnement”, unifie les efforts de plusieurs domaines étroitement liés mais actuellement
disjoints, notamment la robotique, la vision par ordinateur, l’infographie et l’IA.

Ma première contribution—gradSLAM— est un système de localisation et de cartographie
simultanées (SLAM) dense et entièrement différentiable. En permettant le calcul du gradient
à travers des composants autrement non différentiables tels que l’optimisation non linéaire par
moindres carrés, le raycasting, l’odométrie visuelle et la cartographie dense, gradSLAM ouvre
de nouvelles voies pour intégrer la reconstruction 3D classique et l’apprentissage profond.

Ma deuxième contribution - taskography - propose une sparsification conditionnée par
la tâche de grandes scènes 3D encodées sous forme de graphes de scènes 3D. Cela permet
aux planificateurs classiques d’égaler (et de surpasser) les planificateurs de pointe basés sur
l’apprentissage en concentrant le calcul sur les attributs de la scène pertinents pour la tâche.

Ma troisième et dernière contribution—gradSim— est un simulateur entièrement diffé-
rentiable qui combine des moteurs physiques et graphiques différentiables pour permettre
l’estimation des paramètres physiques et le contrôle visuomoteur, uniquement à partir de
vidéos ou d’une image fixe.
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Abstract

Modern artificial intelligence (AI) has created exciting new opportunities for building intelli-
gent robots. In particular, gradient-based learning architectures (deep neural networks) have
tremendously improved 3D scene understanding in terms of perception, reasoning, and action.
However, these advancements have undermined many “classical” techniques developed over
the last few decades. We postulate that a blend of “classical” and “learned” methods is the
most promising path to developing flexible, interpretable, and actionable models of the world:
a necessity for intelligent embodied agents.

“What is the ideal way to combine classical techniques with gradient-based learning
architectures for a rich understanding of the 3D world?” is the central question in this
dissertation. This understanding enables a multitude of applications that fundamentally
impact how embodied agents perceive and interact with their environment. This dissertation,
dubbed “differentiable world programs”, unifies efforts from multiple closely-related but
currently-disjoint fields including robotics, computer vision, computer graphics, and AI.

Our first contribution—gradSLAM—is a fully differentiable dense simultaneous localization
and mapping (SLAM) system. By enabling gradient computation through otherwise non-
differentiable components such as nonlinear least squares optimization, ray casting, visual
odometry, and dense mapping, gradSLAM opens up new avenues for integrating classical 3D
reconstruction and deep learning.

Our second contribution—taskography—proposes a task-conditioned sparsification of
large 3D scenes encoded as 3D scene graphs. This enables classical planners to match (and
surpass) state-of-the-art learning-based planners by focusing computation on task-relevant
scene attributes.

Our third and final contribution—gradSim—is a fully differentiable simulator that com-
poses differentiable physics and graphics engines to enable physical parameter estimation
and visuomotor control, solely from videos or a still image.

Keywords. Deep learning, robotics, differentiable programming, SLAM, 3D scene
understanding, 3D reconstruction, task planning, graph neural networks, differentiable
simulation, differentiable rendering, system identification, visuomotor control
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Chapter 1

Introduction

The last decade (2012 - 2021) has been a defining one for modern artificial intelligence (AI).
Significant progress has been achieved in the areas of computer vision, speech processing,
and natural language processing. Underlying this progress is the resurgence of deep learning –
the idea that representations for several tasks involving machine intelligence may be learned
from large volumes of carefully curated data by leveraging multiple layers of sequential
computations. While many of the ideas behind deep learning have persisted for several
decades, key driving factors – including the widespread availability of large-scale data-parallel
compute infrastructures, stochastic numerical optimization routines, and the use of very large
scale computational models as general purpose function approximators – have led to the
rapid progress and commercialization of AI technologies at an unprecedented scale and rate.

While modern learning-based systems have shown experimentally promising results in
visuolingistic pattern recognition, these systems fail in unintuitive and unpredictable ways
when applied to problems in robotics (embodied intelligence). A key reason for such failures is
that most learning-based approaches do not work in conjunction with “classical”1 approaches
to robotics, instead attempting to replace them in entirety. We posit that a blend of “classical”
and “learned” methods is the most promising path to developing flexible, interpretable, and
actionable models of the world: a necessity for intelligent embodied agents2.

“What is the ideal way to combine classical techniques with gradient-based learning
architectures for a rich understanding of the 3D world?” is the central question that we
address in this dissertation. Understanding this enables a multitude of applications that
fundamentally impact how embodied agents perceive and interact with their environment.
A core, recurring idea in this dissertation is to leverage our prior knowledge of various
phenomena such as 3D geometry, image formation, and dynamics to design effective learning
methods for embodied perception, reasoning, and action.

1The adjective “classical” is not to be misconstrued as “old” or “outdated”. We use this to denote approaches
that do not leverage modern machine learning; relying rather on specialized domain knowledge.
2In this dissertation, we use the terms robot and embodied agent interchangeably.



As a general recipe for designing intelligent embodied agents, we present multiple strategies
that we jointly refer to as differentiable world programs: a design methodology where
we encode our knowledge of the world into a differentiable program, and leverage (stochastic)
gradient-based optimization to infer properties of the program’s inputs and/or parameters.
Explicitly encoding inductive biases into such a program enables the design of more efficient
learning solutions, allowing classical and modern techniques to work in conjunction.

This dissertation is a culmination of three research articles, each bringing together
components from classical robotics and modern gradient-based learning, and other areas
including computer vision and graphics. Together these contributions enhance all the
components of a typical robotics stack: perception (state estimation), reasoning (planning),
and action (control).

(1) The first article, ∇SLAM (gradSLAM), is a fully differentiable dense simultaneous
localization and mapping (SLAM) system. By enabling gradient flow through otherwise
non-differentiable components such as nonlinear least squares optimization, ray casting,
visual odometry, and dense mapping, ∇SLAM opens up new avenues for integrating
classical 3D reconstruction and deep learning for robot perception.

(2) The second article, Taskography, addresses the problem of efficient robot task plan-
ning in large building-scale environments represented as 3D scene graphs (3DSGs) –
hierarchical symbolic-geometric graphical representations. We show that, for a general
class of robotic planning problems with far-reaching applications, planning over large
3DSGs is impractical. We propose a task-conditioned 3DSG sparsification scheme
that allows off-the-shelf classical task planners to match (and surpass) state-of-the-art
learning-based planners.

(3) The third and final article, ∇Sim (gradSim), infuses inductive priors from physics
simulation and image synthesis (graphics) to solve system identification and visuomotor
control problems. Our main contribution is to build a fully differentiable simulator
that composes differentiable physics and graphics engines, enabling gradient-based
optimization to solve challenging high-dimensional control problems solely from videos
or a still image.

A prologue accompanies each article, contextualizing the contribution of the author of
this dissertation. A broader discussion (including known critiques) of the ideas presented in
each article is deferred to the final chapter.
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Chapter 2

Background

This dissertation brings together ideas from several communities including robotics, computer
vision, computer graphics, and machine learning. In this chapter, we review the core ideas
from each of these fields to establish context for the articles that follow. We also discuss
key challenges surrounding existing work in these areas, and how these challenges may be
overcome by blending knowledge from classical techniques with modern learning approaches.

2.1. Computational subsystems of a robot
Any intelligent robotic system needs to carry out a large number of computations to

execute meaningful real-world tasks. Some of these computations are specific to the robotic
system. E.g., sensing and actuation depend on the electromechanical composition of the
robot. However, a vast majority of computations are common capabilities that are required in
a variety of robotic systems. E.g., robots operating within an indoor environment and robots
operating in the wild require both a mental representation of the world and the reasoning
capabilites that enable them to complete a task. To facilitate the design and study of complex
robotic systems and to maximize modularity and reuse, several computational models of
robots have been proposed. These models abstract away the details of each computation and
organize workflow into subsystems (also called layers), providing a framework for the holistic
analysis and design of complex robotic systems.

Sense-Plan-Act (SPA): The most prominent computational model of a robot dates
back to the late 1980s, proposed in Firby [1]. This architecture, commonly referred to
as the sense-plan-act (SPA) architecture, is a three-layer architecture [2] comprising the
perception, planning, and control subsystems. The sense (perception) subsystem observes
the environment and produces states, which are passed to the plan subsystem. This results
in a sequence of actions that accomplish the task, which are converted to low-level actuator
commands by the act (control) subsystem. This affects the state of the robot and/or the
environment, and typically results in a new set of observations at the next time step. At



Fig. 2.1. The sense-plan-act (SPA) architecture is the most widely used paradigm for
designing subsystems of a robot. A robot observes the environment via its sensors. These
sensor observations are fed into the perception subsystem that processes them to produce
state estimates. These are subsequently fed into the planning subsystem, which computes a
sequence of actions that enable the robot to execute a task. The control subsystem executes
these actions by mapping them to actuator commands.

this point, the sense-plan-act loop is repeated, but with the new sensor observations, and
usually a stored history of past states (or minimally, the most recent state). In this view,
sense-plan-act is a conceptually simple architecture; the control flow across all modules and
time steps is linear. We illustrate this architecture in Fig. 2.1.

The linear nature of the sense-plan-architecture also brings in a few shortcomings. First,
errors in upstream modules and/or earlier time steps compound, leading to irrecoverable,
catastrophic failures. Second, there exists no active communication among the modules.
Downstream modules cannot directly influence the functioning of upstream modules; they
may only do so indirectly. E.g., a planing failure due to incorrect state estimates is not
immediately perceived by the perception subsystem; only after passing through the control
subsystem and sensor measurements is the perception subsystem invoked again.

Subsumption architecture: These shortcomings have resulted in a number of other
architectural propositions. Among these other propositions, the subsumption architecture [3]
has received a lot of attention in the 1980s and the 1990s. The key idea of the subsumption
architecture was to view a robot as comprising several behaviors that are organized hier-
archically with the higher levels subsuming lower levels. Subsumption in this case means
that higher levels are able to combine the collective behaviors of the lower layers to achieve
a higher-order behavior that is far more complex compared to the original, much simpler,
behaviors. Subsumption of lower level behaviors is triggered by the current state of the robot
and the environment to achieve a task in the most efficient manner possible.
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Despite the emergence of subsumption and other behavior oriented architectures [4, 5],
sense-plan-act remains the dominant computational model, presumably due to its simplicity.

2.2. Robot perception
The first subsystem in the SPA model is the perception module. This module receives

sensor observations from both proprioceptive and exteroceptive sensors onboard the robot.
The perception module is responsible for processing these sensor observations1 to produce
state estimates; a representation of the robot (and potentially, environment) configuration.

State: A state is a set of variables that captures the configuration of a robot and/or an
environment. In the context of this dissertation, states comprise all variables of interest that
are relevant to a specified task. For example, the state of a mobile robot base moving on
a 2D planar surface may be uniquely and unambiguously specified by estimating its pose
(position and orientation) with respect to a fixed inertial frame.

Complete states and Markov chains: In the context of robot state estimation, it is
helpful to define the notion of a complete state. Formally, a state xt is termed complete if
future variables of interest (i.e., time step t+ 1) are conditionally independent of variables
from the past (i.e., time step t− 1) given xt. A temporal process involving complete states is
referred to as a Markov chain. We assume, unless otherwise stated, that all states used in
this dissertation are complete states and that their evolution produces a Markov chain.

2.2.1. State estimation in robotics

In this section, we briefly review the various components of a state estimation problem as
used in modern probabilistic robotics. For a comprehensive treatment of Bayesian inference
in robotics, we refer the interested reader to Thrun et al. [6].

Preliminaries and notation: Let xt denote the state (of the robot and/or environment)
at time t. At each time step, the robot acts according to the sense-plan-act cycle. It first
receives a sensor observation zt and processes this observation to produce a control action
ut+1. The execution of this control action results in a new state xt+1. This process is repeated
across time steps2, and the dependency structure among these variables is depicted in a
dynamic Bayes network in Fig. 2.2. This Bayes network is typically factorized into two
distinct conditional densities that admit a recursive definition.

Motion model: The motion (or state transition) model is a conditional density that
indicates the probability of arriving at a state xt+1 from a state xt, under an applied control
input ut+1. This is denoted p(xt+1 | xt, ut+1). Note that the assumption that xt is a complete

1We use the term measurement and observation interchangeably.
2In this dissertation, we assume that all events of interest occur at discrete time intervals. We use the notation
t+ 1 to indicate the immediate discrete time step after t.
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Fig. 2.2. Dynamic Bayes network for a typical state estimation problem in robotics (cf.
Thrun et al. [6]). Here, x∗ denotes a state, u∗ denotes a control action, and z∗ denotes a
sensor observation.

state allows us to ignore the influence of all other upstream variables (ut, zt, xt−1, ut−1, zt−1).
We use the notation x0:t to refer to all states x0, x1, · · · , xt.

Observation model: The observation (or measurement) model, denoted p(zt | xt), is
the conditional probability of obtaining an observation zt from a state xt.

Bayesian state estimation problem: A typical state estimation problem involves
estimating the state xt conditioned on the set of all control inputs, past states, and observations.
Mathematically, this involves estimating the conditional probability p(xt | x0:t−1, z1:t−1, u1:t).
This is also referred to as filtering, as only the most recent state is recovered. An estimation
problem recovering the entire sequence of states x0, x1, · · · , xt is referred to as smoothing.

Recursive Bayesian estimation: A general framework that leverages probabilistic
motion and observation models for state estimation may be obtained by applying the Bayes’
rule to the graphical model from Fig. 2.2. The recursive Bayes filter (or simply, “Bayes filter’)
is given by the following equations.

p(xt | z1:t−1, u1:t) =
∫
p(xt | xt−1, ut)︸ ︷︷ ︸

Motion model

p(xt−1 | z1:t−1) dxt−1

p(xt | z1:t, u1:t) ∝ p(zt | xt)︸ ︷︷ ︸
Observation model

p(xt | z1:t−1, u1:t)
(2.2.1)

While recursive Bayesian estimation is computationally infeasible for arbitrary conditional
densities, specific choices of motion and observation models enable tractable algorithms.

Gaussian filtering: An extremely popular realization of the Bayesian estimation frame-
work is the family of Gaussian filtering approaches. The conditional likelihoods in this context
are assumed to be (multivariate) Gaussian distributions. This family of approaches includes
the Kalman filter and variants [7]. Kalman filtering is a popular Gaussian filter for the
setting where both the motion and observation models are linear systems with additive
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white Gaussian noise. For nonlinear motion and observation models, variants such as the
extended Kalman filter (EKF), iterated EKF, or the unscented Kalman filter (UKF) [8]
may be used. Expressing posterior distributions using a Gaussian density often results in
analytical expressions, rendering Gaussian filtering extremely efficient in practice.

Non-parametric filtering: A key weakness of Gaussian filtering approaches is the
premise that the posterior distributions are assumed Gaussian. If the modeling assumptions
do not hold, the quality of the obtained state estimates tends to be poor. Non-parametric
filtering techniques instead attempt to estimate the posterior distribution without having to
necessarily produce an analytical expression for the estimator. Two important non-parametric
filtering approaches include histogram filtering and particle filtering [9]. A histogram filter
decomposes the state space and estimates the density in each sub-region, resulting in a
histogram depicting the posterior. A particle filter, on the other hand, approximates the
state space using several random samples drawn from the approximate posterior, which is
refined simultaneously with the samples.

2.2.2. Simultaneous localization and mapping (SLAM)

A particular class of state estimation problems that has received tremendous attention over
the last four decades is the simultaneous localization and mapping (SLAM) problem. Simply
put, SLAM involves simultaneously estimating the state of the robot and the environment.
The state of the robot is typically represented as a set of one or more kinematic poses that
unambiguously specify its configuration. The state of the environment (also known as the
map), however, may be specified in several forms; giving rise to a broad spectrum of SLAM
approaches. This question of map representation has been the centerpiece of much of SLAM
research during the 1980s through the early 2000s.

SLAM – Problem formulation: The probabilistic simultaneous localization and
mapping problem involves estimating the current state of the robot xt at time t and a
map of the environment m, given a sequence of control inputs u1:t and sensor observations
z1:t. Formally, SLAM entails estimating the posterior density p(xt,m | z1:t,u1:t). A graphical
model depicting the SLAM problem is presented in Fig. 2.3

The difficulty in treating SLAM as a regular state estimation problem arises from the fact
that both localization and mapping are intertwined sub-problems. The localization problem is
a state estimation problem that computes p(xt |m, z1:t,u1:t) – the robot’s state with respect
to a known environment state, control inputs, and sensor observations. The mapping problem
is a state estimation problem that computes p(m | xt, z1:t,u1:t) – the environment state (the
map) with respect to a known robot state, control inputs, and sensor observations. This
induces cyclical dependencies, with the solution to each individual estimation sub-problem
depending on the solution to the other sub-problem.
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Fig. 2.3. Graphical model illustrating the full SLAM problem for three time steps. (cf.
Thrun et al. [6]). Here, x∗ denotes a state, u∗ denotes a control action, z∗ denotes a sensor
observation, and m denotes the map. Nodes shaded in gray are observations, while the other
nodes are variables that are estimated in SLAM.

Anatomy of a SLAM system: SLAM systems can be thought of as comprising two
primary components – a frontend and a backend. The frontend is responsible for converting
sensor inputs into observations that can be fed into an observation models for specifying
a state estimation problem. The backend is responsible for solving the state estimation
problem thus constructed. In a SLAM system, the frontend is usually sensor-dependent; e.g.,
SLAM systems that use images captured from a camera as input require a different frontend
processing scheme compared to systems that use scans acquired from a laser rangefinder.
However, the backends may be shared across a number of SLAM systems (sometimes with a
little reformulation to handle newer sensor types and data rates). Based on the forumlation
used, SLAM backends may be filtering-based or optimization-based.

Filtering-based SLAM backends: The beginnings of SLAM research can be traced
back to the mid-1980s, when several researchers began exploring how the relationships between
a robot and its environment could be described. At the time, Kalman filters had already
demonstrated great promise in the areas of state estimation. Naturally, the earliest approaches
to SLAM leveraged these filtering approaches to estimate the robot and environment states.
However, the main challenge in SLAM as opposed to typical filtering problems was that the
estimation problem required an ever-increasing state vector with newer observations streaming
in at potentially every time step. This led to an increased focus on designing efficient filtering
approaches, and several alterntatives such as unscented Kalman filters, information filters,
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and particle filters were applied to solve the SLAM problem. Several research initiatives also
began tackling the problem of data association – determining whether a new observation
corresponds to a previously observed entity in the environment. A comprehensive survey of
the first 20 years of SLAM research (dating from the mid 1980s through the early 2000s) may
be found in Durrant-Whyte et al. [10].

Optimization-based SLAM backends: A major paradigm shift in SLAM research
occured with the seminal work formulating the estimation problem in SLAM as a graph
optimization problem [11]. Gutmann et al. [12] presented an incremental solution to this
problem in 1999. However, it was not until 2006 that a computationally efficient approach
was proposed to solve the full SLAM problem. Dellaert and Kaess [13] presented square-
root smoothing and mapping, which introduces the formalism of factor graphs to SLAM
backend research. The estimation problem in SLAM is modeled as a factor graph, with
each node indicating a variable to be estimated, and edges (called factors) indicating a
constraint between nodes. These factors are constructed from the sensor observations and
data association provided by the frontend. While the original solution to this problem
presented in [13] is an offline (batch-mode) solution, an incremental strategy that relied
on numerical recipies for incremental, sparse QR factorization was presented by Kaess and
Dellaert in 2007 [14]. To date, graph optimization approaches such as iSAM [14] and g2o [15]
continue to be the dominant choice for SLAM backends, enabling a large number of real-time
and large-scale SLAM systems.

SLAM backends as MAP estimators3: As discussed above, SLAM is typically
formulated as a graph optimization problem, over the probabilistic graphical model illustrated
in Fig. 2.3. Formally, if X denotes all state variables of interest (robot states xt ∀t and map
m), the mode of the posterior distribution specified by this graphical model is obtained by
maximum a posteriori (MAP) estimation.

XMAP = argmax
X

p(X | Z) = argmax
X

p(Z | X ) p(X ) (2.2.2)

If we assume that all measurements Z = {z1, · · · , zM} are independent, and that each
measurement zm,m ∈ {1 · · ·M} corresponds to a state xzm , we obtain an efficient factorization
of the posterior as follows.

XMAP = argmax
X

p(X )
M∏
m=1

p(zm | Xzm) (2.2.3)

In the case where all observation likelihoods are modelled as Gaussian densities, the above
estimation problem can be reduced to a (nonlinear) least squares problem. Let us assume
that each conditional observation likelihood p(zm | Xzm) is a Gaussian with covariance matrix
Ωm and has a mean equal to the sensor observation zm. Further, we assume that h() is a

3This exposition is drawn largely from Cadena et al. [16].
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measurement model that maps sensor observations to states. The probability density function
(PDF) of the observation likelihood can be written as

p(zm|Xzm) ∝ exp (−h(Xzm)− zm)T Ω−1
m (h(Xzm)− zm) = exp

(
−‖h(Xzm)− zm‖2

Ωm

)
(2.2.4)

Rewriting the MAP estimation as a negative log-likelihood minimization, we obtain a nonlinear
least squares problem.

XMAP = argmin
X

− log
(
p(X )

M∏
m=1

p(zm | Xzm)
)

XMAP = argmin
X

M∑
m=1
‖h(Xzm)− zm‖2

Ωm

(2.2.5)

We review optimization algorithms for nonlinear least-squares problems like these in Sec. 2.6.
SLAM frontends: The primary objective of a SLAM frontend is to setup the MAP

estimation problem that is solved by the backend. This entails processing raw sensor
observations, associating them with map elements across time, and converting them into a
form that is more amenable to nonlinear least-squares optimization. For instance, a vision-
based SLAM frontend needs to take in raw images, process them to produce map attributes,
track these map attributes across time, and convert them into appropriate constraints (factors)
that capture the relationship between the 3D scene captured in the images. Depending on
the choice of sensor observations, a number of frontend possibilities exist for a SLAM system
designer. In this dissertation, we primarily focus on visual SLAM, where images captured
by cameras are the primary source of observations made on the operating environment. In
particular, we use specific kinds of cameras such as the Microsoft Kinect and Intel RealSense
that produce per-pixel depth measurements in addition to color intensities. We review visual
SLAM in section 2.5.2.

We note that there exists a large body of literature on leveraging alternate forms of
sensing, such as aural (sound) sensors, tactile (touch) sensors, and olfactory (smell) sensors,
that are outside the scope of the articles presented here.

2.3. Robot planning
Given perceptual inputs (state estimates), this next subsystem of the SPA model plans a

sequence of robot actions that achieve a task specification. Depending on the granularity of
this plan, planning techniques are classified as either symbolic (task, or high-level) planners
or motion (low-level) planners. In this dissertation, our focus is solely on symbolic planning.
This section introduces symbolic planning problems and how they are specified and solved in
modern robotic systems. Towards the end, we briefly discuss motion planning approaches
and efforts that attempt to integrate both symbolic and motion planners.
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2.3.1. Symbolic planning

Many robotic tasks involve the interplay of high-level concepts or facts that are hard
(in some cases, impossible) to specify mathematically. For example, if a robot is assigned
the task of pouring coffee into a cup, it needs to know about the existence of a cup, that a
cup is something you can pour coffee into, and that the cup is full when it holds a certain
volume of coffee. To deliver this cup to a person, a robot needs to know other things like
whether it can pick up the cup, and whether it can hand over the cup to the person. The
core entities in such a planning problem are symbols (e.g., the robot, cup, coffee). Symbols
often have properties (predicates) that indicate how they interact with other symbols (e.g.,
is full, can pour, can hand over). Symbolic planning problems—also referred to as task
planning problems—entail prescribing a sequence of high-level (symbolic state) transitions
that achieve a set of goal conditions. Such planning problems have existed in much of the
classical AI literature, dating back to the 1960s. We now introduce a few concepts associated
with symbolic planning, which will enable us to formally specify a planning problem4.

• Object: An object is an atomic entity in a planning problem that can be acted upon.
We use the term ground objects to refer to specific objects (e.g., a specific apple on a
table), and the term lifted objects to refer to object categories as a whole (e.g., the
concept “apple”).
• Agent: An agent is an entity that acts in the environment, tasked with the goal of
following instructions generated by a planning algorithm.
• Property: A property is a function defined over one or more objects. A property
may be unary (e.g., weight of an apple), binary (e.g., an apple is on the table), or
n-ary.
• Predicate: The term predicate refers to a subclass of a properties that are boolean-
valued. In this work, we restrict ourselves to unary and binary predicates.
• State: A state is an assignment of values to all possible properties over ground
objects.
• Action: An action is an operation that changes the state of one or more objects
or agents. Actions may be grounded or object-parameterized. A ground action is
an action applied to a ground object instance. An object-parameterized (or lifted)
action is bound to an object only when the action is evaluated by instantiation with
a ground object instance.
• Transition model: A transition model is a mapping from a state s and an action
a to a subsequent state s′. Optionally, transition models may also store a cost c for
each transition, denoted as c(s, a, s′).

4In this dissertation, we will use the term planning to mean “symbolic planning”, commonly referred to as
“task planning”.
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Symbolic planning problem: A symbolic planning problem Π is a tuple
〈O,P ,A, T , C, I,G〉, where O is a set of objects, P is a set of properties defined
over one or more of these objects, A is a set of lifted actions, T is a state transition function,
C is a transition cost function, I is the initial state of the environment, and G is the desired
or goal state of the environment.

Table 2.1. Taxonomy of symbolic planning by varying each component in a planning problem

Component varied Classes of planning problems
state transitions (T ) deterministic, nondeterministic, probabilistic
observability (I,O,P) full, partial, none
horizon (T ) finite, infinite
goal specification (G, C) satisficing, optimizing

Taxonomy of planning problems: Depending on the specific choices and constraints
imposed on each component of a planning problem Π, we describe a taxonomy of symbolic
planning. State transitions in a planning problem may be deterministic, nondeterministic, or
probabilistic. Additionally, the state of the environment and the agent may be fully observable,
partially observable, or in a hypothetical extreme, unobservable. Based on the planning
horizon, problems are classified as finite or infinite. Depending on the goal specification,
planning problems may be specified as satisficing or optimizing. Satisficing planning problems
necessitate the computation of a solution that satisfies a set of conditions without regards to
the cost of executing the computed plan. However, optimizing planning problems require the
computation of the least cost plan that achieves a goal state. Typically, optimizing planning
problems are much harder than satisficing planning problems due to this added complexity
of finding minimum-cost solutions. This taxonomy is summarized in Table 2.1.

Planning domain definition language (PDDL): A standard language used to encode
symbolic planning tasks is the planning domain definition language (PDDL) [17]. PDDL
has been widely influential in providing a unified mechanism to specify planning problems,
and has resulted in dramatic progress in the field of classical (symbolic) planning since
the mid-1990s [18]. A PDDL planning problem is a special case of the symbolic planning
problem defined above, where the set of properties P is constrained to contain unary or
binary predicates5. PDDL specifies a planning problem in two stages. First, a domain file
describes the set of object types, (unary and binary) predicates, and actions. Each action
has a precondition and an effect. A precondition is a binary condition (usually conjunction or
disjunction of literals) that must be satisfied before an action may be executed. An effect is a
consequence of the action; it describes the eventual value of all predicates that are impacted

5We note that recent versions of PDDL support properties with higher arity and initial support for continuous
parameters. In this dissertation, we restrict our discussion to PDDL1.2 and earlier
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by an action. Many planning systems partition the effect into an add list and a delete list,
where the add list contains positive literals and the delete list contains negative literals.
PDDL preconditions can include universal quantification, and effects can include nested
conditions. This information included in the domain file specifies the problem domain. The
actual problem instance is encoded in a separate file, called the problem file. The problem
file links to the domain file to retrieve the list of object types, properties, and actions. This
file then specifies the actual object instances available to the planner, and the initial and
goal conditions. The burden of enumerating all possible transitions and costs is thus shifted
onto the PDDL parser and compiler, which allows for the specification of a wide variety
of planning problems. PDDL has since been extended to handle probabilistic effects [19],
temporal domains [20, 21], and blackbox samplers [22].

Another prominent specification language for planning problems is STRIPS (Stanford
research institute problem solver) [23], which is a strict subset of PDDL. STRIPS assumes
a closed-world, which implies that all predicates that are not specified in the problem are
assumed to be false. PDDL, on the other hand, assumes unspecified predicates as unknown.
This allows PDDL to specify a richer set of planning problems.

2.3.2. Classical planning techniques

A large body of work on symbolic planning focuses on designing efficient variants of
graph-based search. We refer to this class of approaches—dating from the mid-1980 through
the late 2000s—as classical planning techniques. These techniques are primarily rule-based
or algorithmic, and do not leverage a specific set of prior experiences to plan more efficiently.
This is in contrast to learning-based planners, which we discuss subsequently.

To solve the large, complex planning problems that arise in everyday tasks (such as cleaning
or organizing a home, cooking a recipe), pure graph search strategies are computationally
infeasible. This is because, to guarantee completeness6, search techniques will often need to
visit millions of graph nodes until a solution is found. Furthermore, it may not be possible to
fully expand out a state-transition graph to begin with, as planning problems involve state
spaces with large branching factors and/or stochastic transitions. This has resulted in a
bifurcation of classical planning techniques based on the operational constraints over the goal
specification.

Satisficing planners are the dominant class of approaches that have found widespread use
in time-constrained robotic applications. These planners attempt to find a feasible solution,
as opposed to optimal planners which attempt expensive searches to obtain the best possible
solution (if one exists). Satisficing planners usually rely on several kinds of heuristics to discard

6A complete planner is one that is guaranteed to return a solution if one exists for the problem (or report
failure otherwise).
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large regions of the state-space [24, 25, 26], while optimal planners rely on propositional
logic and constraint satisfaction solvers to generate optimal solutions [27, 28, 29, 30].

Heuristic-based planners: A popular class of satisficing planners leverage a declarative
specification of the planning problem to devise admissible heuristics – cost-to-goal estimators
that never overestimate. These admissible heuristics are employed to constrain the search
algorithm to promising paths in the planning state graph. Heuristics may be computed via
abstracted planning [31], detecting landmarks [32], identifying critical paths in the planning
search graph [33], or ignoring delete lists [34, 25, 26]. Some of the most prominent classical
planners adopt the latter strategy of ignoring delete lists because of its simplicity. Important
variants of this class of planners include planning as heuristic search (HSP) [34], fast-forward
planning (FF-plan) [25], fast-downward planning [26] and variants. To date, FF-plan and
FD-plan remain the most popular planners for use with robotic task planning [35, 36].

There are several design choices involved in a heuristic planner. The first—and admittedly
most important—one is the choice of heuristic. Apart from this, the graph search strategy,
node selection mechanism, exploration-exploitation tradeoff, and the choice of data structures
used to store frontier nodes and delete lists; are all important factors that influence planning
performance. A few popular search strategies include the A* planner and variants, best-first
search strategies, and hill-climbing methods.

HSP: HSP [34] was one of the first planners that rendered state-space search practical for
large planning problems. HSP ignores delete lists and introduces a heuristic that approximates
the cost of an optimal solution in the relaxed-planning graph thus obtained. While the heuristic
function is effective for planning, it is computationally expensive, and HSP as a strategy does
not guarantee completeness.

Fast forward planning: The FF-plan system [25] is a widely adopted system, proposing
several key improvements over HSP. The heuristic used in FF-plan leverages GraphPlan [37]
which is capable of polynomial time planning over reduced planning graphs (where delete lists
have been ignored). An enforced hill-climbing strategy is used for search, which guarantees
completeness provided the graph does not contain any dead ends (irreversible effects that do
not allow for backtracking). While FF-plan is much faster, its heuristic is often inferior to
HSP, resulting in longer plans with increased costs.

Fast downward planning: The FD-plan system [26] extends FF-plan by combining
three independent search strategies and deriving heuristics leveraging graph hierarchies. The
three search strategies are complementary, and use multiple heuristics. Several variants of
FD-plan have been proposed over the years, and this currently remains the de facto classical
planner for satisficing planning scenarios. While FD-plan takes significantly longer time to
compute heuristics, solutions produced by FD-plan tend to be much shorter than FF-plan.

MCTS and regression planning: Other prominent classical symbolic planners include
Monte Carlo tree search (MCTS) [38] and regression planning [39]. MCTS leverages a large
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number of random sample paths (rollouts) over the state space to identify promising actions,
while regression planning searches backwards for a path from the goal state to the start state.

2.3.3. Learning-based planning

While satisficing symbolic planners have achieved remarkable results over real-world
planning domains, these techniques primarily rely on heuristics and search strategies crafted
by domain experts for efficient planning. Enabling planners to automatically discover task-
specific heuristics and/or search strategies should therefore improve planning performance.
This is the primary motivation that underlies several learning-based planning techniques.

Approaches to learning-based symbolic planning may be broadly classified into one of the
following paradigms. The first category of approaches [36, 40] learns projective abstractions
that reduce the original planning problem to a (typically) smaller, easier to solve subproblem.
These subproblems are then solved by leveraging classical symbolic planners at a fraction of
the computational costs associated with solving the full problem. The second category of
approaches [41, 42, 43, 44, 45] instead deploys a function approximator (such as a neural
network) as a differentiable planning module, optimized to find the best possible plans for
the original planning problem.

Learning projective abstractions for symbolic planning: This class of approaches
stems from the idea that in several planning problems of interest [46], there exist a large
fraction of objects that are extraneous to the planning problem; i.e., such objects do not
form a part of the solution and may be safely ignored. These notions of contextual irrel-
evance and object importance are leveraged in two recent approaches – CAMPS [40] and
PLOI [36]. CAMPS leverages the notion of context-specific independence [47] to project out
all contextually irrelevant variables to produce smaller and easier subproblems. PLOI [36],
on the other hand, trains a neural network that estimates an importance score for each
object in the planning problem. Objects with importance scores above a threshold are used
to define a reduced planning problem, which is solved using classical symbolic planners
such as FD-plan [26]. To account for erroneous importance score that lead to incorrectly
reduced planning problems, PLOI incorporates an iterative replanning strategy – if a reduced
planning problem is deemed unsolvable, the importance score threshold is lowered using
a multiplicative decay factor, which results in more objects being retained in the reduced
problem. In the limit, the threshold approaches 0 and all objects in the original planning
problem are retained the reduction, ensuring completeness. PLOI results in state-of-the-art
performance over several challenging symbolic domains. However, in large problem instances,
PLOI also tends to incur substantial replanning costs, which we address in our work. We note
that projective abstractions have also been used in other planning approaches with similar
performance gains [48, 49, 50, 51, 52].

43



Learning neural symbolic planning strategies: An alternative class of learning-
based symbolic planners leverage deep neural networks to predict state transitions over
a planning graph or to learn heuristics and value functions over the search space. Such
techniques often draw inspiration from successful classical planning counterparts such as
MCTS and regression planning and swap out key handcrafted components in favor of flexible
learnable modules. MCTSNets [45] replaces the various components of MCTS using neural
networks that evaluate the quality of a state, simulate a rollout from that state, and preform
value propagation respectively. All of these modules are supervised by leveraging a database of
expert demonstrations that are used to generate a reward signal that identifies and promotes
promising actions. This approach has been applied to long-horizon planning problems, albeit
outside the areas of robotics. Regression planning networks (RPNs) [44], on the other hand,
model their approach based on classical regression planning. RPNs begin from the goal state
and propose a set of subgoals conditioned on the current observation. This conditioning
allows for learning-based approaches to lean on prior experience and speeds up search. RPNs
achieve remarkably complex tasks in small-scale planning problems, but their applicability to
large problem instances remains to be seen.

2.3.4. Low-level planning

Motion planning: Unlike symbolic planning, which focuses on determining the sequence
of symbolic/logical actions to achieve a goal, motion planning must take into account the
kinematic constraints imposed by the robot’s mechanical design and the geometric structure
of the environment. The earliest motion planning techniques were geometric techniques that
computed solutions by parameterizing the environment using a set of analytical primitives.
However, the current best approaches to motion planning are sampling-based [53, 54] which
rely on efficient sampling strategies over the robot’s configuration space to plan faster. An
extensive survey of motion planning techniques can be found in Lavalle [55].

Task and motion planning: A noteworthy line of research that is not directly related
to this dissertaion is that of (simultaneous) task and motion planning (TAMP). This class of
approaches jointly solve the symbolic and motion planning problems, enabling synergies and
communication between the typically disjoint planning modules [56, 57].

2.4. Robot control
The third SPA subsystem is the control subsystem, whose primary responsibility is to

ensure that the motion plans computed by the planning subsystem are accurately executed,
despite the presence of actuation noise and other disturbances (unmodelled effects) in the
environment. The development of robot control strategies shares a strong parallel in state
estimation techniques (as estimation and control are often employed in an interleaved pipelines
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even outside of the SPA framework). Based on the information that a controller assumes
about the system to be controlled, control techniques are bifurcated into model-based and
model-free approaches.

Model-based control: Model-based approaches involve building a model (or assume one
is provided) describing the state-transition dynamics of the system. We define fθ : X ×U 7→ X
as the transition model, where X is the state space (i.e., the set of possible states), U is the
action space (i.e., the set of possible actions), and θ are the model parameters. This model
is subsequently used in a control strategy that generates a sequence of actions that track
a motion plan computed by the motion planning module. A popular class of model-based
control is the linear quadratic regulator (LQR) [58], based on the Kalman filter for linear
Gaussian models. Another class of popular approaches, which we discuss below in greater
detail, is model-predictive control (MPC). Model-based approaches tend to struggle when
system dynamics become extremely hard to model reliably. This has resulted in a vast
body of literature on robust controller design and optimal control that deals with designing
controllers for environments with hard-to-model disturbance factors [59].

Model-free control: Model-free approaches, on the other hand, directly compute a
sequence of actions without leveraging an explicit model of state transition dynamics. Such
approaches are conceptually simpler and can be optimized end-to-end on a given task,
bypassing the model-building stage entirely. Modern model-free reinforcement learning
approaches to control have enabled the learning of control policies from very high-dimensional
observations such as raw image sequences [60, 61]. However, these approaches suffer from
issues of poor sample complexity and generalization. Furthermore, optimality guarantees are
hard to obtain for model-free approaches. Conceptually simple model-free controllers deployed
in modern robots include the proportional-integral-derivative (PID) (and variants) [62].

2.4.1. Model-predictive control (MPC)

Model-predictive control (MPC)—also called receding horizon control (RHC)—is an
extremely popular class of model-based control techniques. In MPC, a predictive model of
state transitions is employed in an online optimization problem in a receding-horizon fashion.
Formally, the optimization problem solved by an MPC technique is specified as follows [63].

argmin
x1:T∈X , u1:T

T∑
t=1

Ct(xt,ut) subject to xt+1 = fθ(xt,ut),x1 = xinit (2.4.1)

In other words, MPC aims to find a sequence of states x1:T and control actions u1:T that
minimize a task-specific objective (or cost) function ∑tCt(xt,ut), while ensuring that the
sequence of state transitions is feasible. In practice, MPC optimizes this cost over a time
horizon T and executes the most promising control action. At the next time-step, instead of
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executing the next control action in the sequence, MPC solves the optimization using the
most current state estimate; to achieve robustness to noisy dynamics models.

2.4.2. Differentiable physics for model-based control

Differentiable simulation is a new frontier that leverages differentiable programming to
compute gradients of the simulator inputs and parameters w.r.t. the outputs. This enables
efficient gradient-based optimization to estimate the parameters of a model-based controller
by minimizing an objective function defined over the simulator outputs.

Differentiable simulation has shown impressive results in learning simulation of deformable
objects [64, 65, 66], fluid dynamics [67], and simulating molecular dynamics [68]. However,
existing approaches leveraging differentiability require expensive state-space supervision,
which is infeasible for systems involving extreme deformation such as soft robots or cloth.

2.5. Computer vision
The primary sensing modality employed in this dissertation is vision. Much like humans

rely on visual perception for several innate capabilities that enable them to plan and execute
day-to-day tasks, the central goal of computer/machine vision is to enable machines to do the
same, by inferring meaningful attributes of the scene given a set of projections of that scene
captured by imaging devices. Computer vision includes a broad set of capabilities, generally
pertaining to recognizing objects and other meaningful entities in a scene, reconstructing
aspects of data that are lost in the imaging process (e.g., 3D structure), and reorganizing
these scene entities and data into meaningful percepts that are passed on to downstream
modules [69]. In this sub-section, we survey two key computer vision components that our
work builds on, namely, structure-from-motion (SfM) and visual SLAM.

2.5.1. Structure-from-Motion

Structure-from-Motion (SfM) is the task of recovering the underlying 3D structure of
a scene by leveraging steriopsis induced by a moving camera. For a long period in the
history of computer vision (until the past decade), 3D computer vision was synonymous with
SfM. Approaches to SfM may be classified on the basis of the representation of the scene or
depending on the nature of the algorithm.

Batch vs online SfM: Early approaches to SfM include offiline/batch mode techniqes,
which compute scene structure after all input images have been observed. This allows
such approaches to optimally choose the sequence of images that would produce the best
result, and also leverage simultaneous scene observations from all available viewpoints.
Online/incremental SfM, on the other hand, aims to provide an up-to-date structure and
motion estimate as each image arrives. In this paradigm, the SfM technique has little control
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over its stability (as it has no choice but to process the subsequent image), however this
enables several interactive applications (such as robotic manipulation and navigation) which
require a live scene model.

Feature-based (sparse) vs Dense SfM: Depending on the nature of the scene repre-
sentation, SfM techniques may either be sparse or dense. In sparse SfM, 3D estimates are
recovered only for subset of distinct pixels across all images. On the other hand, in dense SfM,
3D estimates of every pixel in every image are recovered. The choice of scene representation
crucially relies on the downstream task; for tasks involving robot navigation on flat ground,
sparse maps have been demonstrated to be sufficient; for tasks involving object manipulation
or scene digitization, dense representations are crucial.

Subsystems of an SfM pipeline: Most modern SfM systems comprise two components
– a frontend and a backend. The frontend component is responsible for extracting initial
estimates of scene structure and camera motion (e.g., by extracting and comparing sparse
features across images). The backend component is responsible for refining these initial
estimates by leveraging global consistency constraints. Modern SfM backends cast the
problem of recovering structure and motion estimates into a sparse graph optimization
framework, akin to graph SLAM systems. This class of problems, commonly referred to as
bundle adjustment (BA), has received a great deal of attention in the 1990s and 2000s, and
has resulted in several stable implementations, to the extent that these are now treated as
plug-and-play components in certain computer vision applications.

2.5.2. Visual SLAM

Visual SLAM is the variant of SLAM that relies primarily on visual observations. Visual
SLAM is a subset of incremental SfM and can produce either sparse (feature-based) or dense
scene representations (maps). A subtle distinguishing factor between visual SLAM and
incremental SfM is that visual SLAM typically assumes all images to be captured by the
same imaging device, while in the case of incremental SfM, each incoming image may be
captured by a different camera. In this subsection, we briefly review prominent approaches
to visual SLAM spanning the last 4 decades7.

Taxonomy of visual SLAM systems based on map representations: A central
question surrounding the design of visual SLAM systems is one of map representation.
Depending on the choice of map representation, visual SLAM systems are broadly categorized
as feature-based and dense SLAM approaches. Feature-based SLAM systems process incoming
image streams to identify distinctive points (features) across images, and represent each
of these features as 3D entities. These features are chosen in a manner that makes them
most amenable to data association (tracking) and reconstruction (mapping). Common

7From this point on, we use the term SLAM to mean visual SLAM.
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choices for map features include points, lines, planes, fiducial markers, or a combination of
these. Feature-based SLAM is an extremely popular paradigm owing to its computational
efficiency and deployability on resource-constrained settings. However, in environments where
features are scarce (e.g., textureless environments, strong camera motion), feature-based
approaches are rendered inapplicable. An alternative to feature-based SLAM approaches is
dense SLAM, wherein every pixel in every image is stored in the map. While this paradigm is
computationally more intensive, dense SLAM produces map representations that are human
interpretable and may be consumed by graphics applications. Popular choices for representing
dense 3D reconstructions include pointclouds, voxel grids, signed distance functions, surfels,
and polygonal meshes.

Visual odometry (VO): The beginnings of classical visual SLAM can be traced back
to the seminal work on visual odometry (VO) by Nister et al. [70]. The term visual odometry
refers to the idea of estimating camera egomotion solely from image sequences. Unlike visual
SLAM, the task of VO does not involve maintaining an explicit map of the environment
(however, modern VO systems tend to maintain an internal map to aid egomotion estimation).
The beginnings of VO can be traced to early work by Moravec in the 1980s [71] on vision-based
obstacle avoidance and navigation for mobile robots.

Filtering-based SLAM: One of the first successful demonstrations of reconstructing
3D maps from image sequences was the DROID system by Harris and Pike [72]. In this work,
a set of distinct feature points were extracted from each incoming image and fed into an EKF
for state estimation. A key limitation of this approach, however, was that each estimation
problem was solved independently without regards to egomotion estimation. MonoSLAM [73]
was the first to demonstrate stable real-time mapping from a mobile monocular camera.
While MonoSLAM had its roots in Davison’s dissertation in 1999 [74], the key insight to
real-time performance was to construct a joint estimation problem involving the egomotion
of the camera, as well as feature points in the environment. However, the tight coupling
between egomotion estimation (tracking) and 3D feature reconstruction (mapping) renders
the system very sensitive to errors induced by incorrect data association or motion blur
induced by freeform camera motion.

Decoupled tracking and mapping: A breakthrough in model-based visual SLAM
was the PTAM (parallel tracking and mapping) approach by Klein and Murray [75]. The
key idea in PTAM was to decouple the tracking and mapping subproblems in visual SLAM,
allowing the processes to run in parallel on independent threads. This allows the tracking—a
fast process—to run in the foreground at frame rate (i.e., in real-time), while the mapping
process can run in the background and maintain a slightly outdated map. This paradigm of
decoupling the tracking and mapping processes is retained by several state-of-the-art VO and
SLAM systems over the years.
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Visual place recognition: A key component of a long-term SLAM system is loop
closure – the ability to recognize redundant scene attributes across time and leverage the
associated observations to reduce estimation errors. In the context of visual SLAM, this
capability is achieved by visual place recognition (VPR) modules. A popular approach to
appearance-based mapping was FABMAP [76], which learned a bag-of-words model over a
vocabulary of distinctive point features extracted from an image sequence. This formed the
basis for several classical place recognition systems that are employed in state-of-the-art SLAM
pipelines. Recently, learning based approaches—notably NetVLAD [77] and variants—have
greatly improved the robustness of place recognition techniques to appearance changes across
time. For comprehensive reviews on visual place recognition and discussions on emerging
directions respectively, we refer to the surveys by Lowry et al. [78] and Garg et al. [79].

Modern feature-based SLAM systems: State-of-the-art feature-based SLAM systems
such as ORB-SLAM [80, 81] leverage advances on all of the aforementioned fronts and combine
them with smart keyframe selection strategies and robust backend optimizers to provide
performant real-time SLAM capabilities.

Dense SLAM: The field of dense visual odometry began with work by Steinbrucker et
al. [82], who formulated 3D egomotion estimation as an image alignment problem. Instead
of finding distinctive features within an image, egomotion is estimated by computing a
perspective warp that maps each pixel in a source image to a corresponding pixel in a target
image by directly minimizing the difference in their per-pixel intensities. This was later
developed into a complete RGB-D odometry system by Kerl et al. [83] and extended to
perform SLAM. Another approach, DTAM (dense tracking and mapping) [84], enabled real-
time dense SLAM from images captured by monocular cameras by formulating a photometric
error over a cost volume.

RGB-D SLAM: The advent of real-time depth capture technologies such as Microsoft
Kinect and access to consumer-grade GPU compute dramatically impacted the landscape
of dense SLAM research. Novel techniques to fuse depth observations from multiple views
in real-time on a GPU were proposed. KinectFusion [85] leveraged volumetric signed
distance functions to fuse incoming observations, followed by an alignment scheme to compute
egomotion estimates. The entire map was stored and manipulated in GPU memory, which
eliminated the need for explicit place recognition and pose-graph optimization; but limited
the resolution and/or extent of the maps that could be built. Kintinuous [86] extended
KinectFusion [85] by the combination of a novel moving-volume GPU buffer that followed
the camera, and a meshing scheme that converted the out-of-buffer map elements into a
triangle mesh amenable to pose-graph optimization. Point-based fusion [87] proposed a surfel
representation that eliminated the need for voxel-grid maps. This was extended to incorporate
graph optimization with a novel map deformation constraint in ElasticFusion [88].
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Semi-dense and semi-direct SLAM: Some SLAM systems attempt to leverage the
strengths of both feature-based and dense SLAM systems. Approaches such as LSD-SLAM [89]
and DSO [90] design photometric bundle adjustment estimation routines for monocular videos.
SVO [91] leverages a probabilistic mapping scheme to enable real-time and robust operation.

Deep learning for SLAM: Deep convolutional neural networks have demonstrated
tremendous potential for image-based recognition tasks. Traditionally, maps obtained from
a SLAM system only capture the geometric structure of a scene. Integrating deep neural
networks into SLAM pipelines enables maps to store richer semantic information, such as
the objects contained within a scene, their functional attributes, etc. SLAM++ [92] was
an early dense SLAM system that leveraged KinectFusion to build object-based maps of an
environment. McCormac et al. [93] extend ElasticFusion [88] by integrating it with an image
segmentation module to obtain consistent 3D semantic labels. Multiple other SLAM systems
have integrated deep neural networks for object detection into SLAM pipelines [94, 95, 96].
Another prominent application of deep learning for SLAM has been in the areas of depth
estimation from a single image. Approaches such as SfMLearner [97] have demonstrated
the role of projective geometric constraints in recovering dense depth maps from a pair of
images. Depth estimates thus learned have directly been plugged into SLAM pipelines [98].
Approaches such as CodeSLAM [99, 100] have attempted a deeper integration between
trainable neural network components and traditional dense SLAM by optimizing compact
codes in a graph optimization framework.

2.6. Nonlinear least squares optimization
As seen in the preceding sections, several tasks of interest in the robotics and computer

vision communities are formulated as nonlinear least squares problems. A nonlinear least
squares problem optimizing for the parameters x of a differentiable function f(.) given
observations y has the following sum-of-squared-residuals form.

min
x
C(x) =

∑
i

rTi (x)ri(x) =
∑
i

‖fi(x)− yi‖2
2 (2.6.1)

Each residual ri(x) is a nonlinear function of the parameters x. Example nonlinear least-
squares problems of note include pointcloud alignment, mesh deformation, image warping,
trajectory optimization, and structure-from-motion. While these problems can be solved
using first-order optimization techniques like gradient descent, specialized solvers leveraging
approximate curvature information have been developed over the last several decades. Of
these, the Gauss-Newton or Levenberg-Marquardt are the most widely applied, with the
former being preferred for convergence speed and the latter being preferred in applications
with larger noise ranges or poor initial guesses.
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2.6.1. Gradient descent

A conceptually simple approach to minimize differentiable objective functions is to
gradually update the parameter vectors being optimized along the negative direction of the
gradient. Given the objective function C(x) and an initial guess x0, gradient descent applies
the following update rule

xt+1 ← xt − η∇xC(x) = x0 − η
∂C(x)
∂x

∣∣∣∣
x=xt

(2.6.2)

Under this scheme, the direction of each update is determined by the gradient ∇xC(x), and
the magnitude of the update is determined by the step size parameter η. Gradient-based
optimization schemes are the dominant tools used for loss minimization in several disciplines
across science and engineering, primarily due to their simplicity.

2.6.2. The Gauss-Newton (GN) method

The Gauss-Newton method is an iterative optimization method involving two steps
(lineraization, followed by a Newton update). First, the cost function C(x) linearized by using
a first order Taylor series expansion around the current solution guess (see Eq. below).

ri(x)|x=x0 = ri(x0) + Ji(x)|x=x0δx

= ri(x0) + ∂ri(x)
∂x

∣∣∣∣
x=x0

δx
(2.6.3)

This results in a linear least squares system (locally linear at the linearization point x0). Each
block in the least squares system thus obtained has normal equations of the form

JTi Jiδx = JTi ri (2.6.4)

The resulting linear least squares system is solved to compute the updated parameter vector,
which now becomes the linearization point for the next iteration. This process is repeated
until convergence, or a predefined tolerance criterion is achieved. Note how, different from
gradient descent updates, there is no requirement of a step size parameter η. The magnitude
of the update is determined by (JTi Ji)−1; an approximation of the local curvature at the
linearization point. This allows Gauss-Newton optimization procedures to converge orders of
magnitude faster than gradient descent when suitably initialized.

2.6.3. The Levenberg-Marquardt (LM) method

The above (Gauss-Newton) approximation has two important ramifications. First, there
are no checks in place to ensure that subsequent iterates do not diverge from the initial
solution. In practice, divergence is observed when the initial guess is poor (i.e., outside the
basin of convergence). Second, the algorithm is numerically unstable when the approximate
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Hessian (JTJ) is near-singular. The Levenberg-Marquardt technique [101, 102] addresses
both these shortcomings. It is a trust-region method, in that it specifies a region around the
current linearization point (the trust-radius) where the Taylor-series expansion (and thereby
the Hessian-approximation) holds.

For a given linearization point xi, one LM iteration proceeds as follows:
(1) Compute the approximate Hessian as JTi Ji + λI, where λ is a damping coefficient

(usually initialized to a tiny constant), for numerical conditioning (λ indicates the
trust-radius).

(2) Using this approximate Hessian, perform a Newton step to compute a lookahead
subsequent iterate x̂i+1.

(3) Evaluate the cost function at this lookahead iterate ĉi+1 = C(x̂i+1), and compare it
with the current cost ci = C(xi).

(4) If the lookahead cost ĉi+1 increases (compared to ci), do not update the parameter
vector (xi). Increase the damping factor using a suitable damping strategy [103].

(5) Otherwise, i.e., if the lookahead cost ci reduces, update the parameter vector xi to
x̂i+1 and decrease the damping factor.

This variant of the approximate Hessian lends LM the representational power to switch
between GN-like (λ → 0) behavior and GD-like behavior (λ → ∞). The most commonly
used damping strategy is the multiplicative damping strategy, which damps by using the
rule λ ← λ × 2 and undamps by using the rule λ ← λ

2 . Modern approaches to nonlinear
least-squares leverage LM solvers due to their flexibility and non-divergence guarantees.

2.7. Machine learning background
Modern machine learning (ML) techniques—primarily deep learning (DL) methods—have

unlocked a new level of performance in several domains such as image, text, and speech
recognition. The term deep learning commonly refers to the use of deep neural networks
(DNNs, or simply, NNs) (i.e., neural networks comprising several stacked layers) and gradient
based optimization (backpropagation) for learning representations. DNNs have proved to
be a successful paradigm for learning representations, particularly in the supervised setting
(where labeled data exists). While neural networks offer an elegant framework to process large
volumes of such data, the most successful ML techniques for processing and manipulating
data mandate the availability of large (and ideally, carefully-labelled) training datasets. In the
absence of large amounts of data, representation learning is typically enabled by exploiting
inductive biases specific to the class of problems under consideration.

In this section, we review some essential deep learning concepts used in this dissertation.
For a thorough reference on the subject, we refer the reader to the deep learning textbook by
Goodfellow et al. [104].
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2.7.1. Machine learning problem

In modern machine learning problems, the primary task is to leverage observed data (the
training set) to specify a function that estimates (predicts) values of interest over unobserved
data (the test set). Formally, assume a training dataset D , {(xi, yi)}i=1...|D| with xi ∈ X
where X is the input space and yi ∈ Y where Y is the output space. A machine learning
model is a function fθ : X 7→ Y from the input to the output space. The quality (accuracy)
of this function is computed by measuring the discrepancy L between the function outputs
f(xi) and the corresponding target values yi. This discrepancy measure is often referred to
as empirical risk, and the function L is referred to as a loss function. A machine learning
problem involves estimating the parameters θ of the model fθ, typically by minimizing the
empirical risk.

Remp(fθ) = 1
N

N∑
i=1
L(fθ(xi),yi) (2.7.1)

This above setting is commonly referred to as supervised learning. Alternative
paradigms where labelled data is not assumed available include semi-supervised or un-
supervised learning. For the case where labeled data is not directly available but the quality
of a model prediction may be evaluated, learning paradigms such as reinforcement learning
are applicable. The techniques developed in this dissertation stem from the above empirical
risk minimization setup, so we limit our discussion to the supervised learning setting.

2.7.2. Deep learning: Neural networks

Deep learning commonly refers to the use of deep neural networks (i.e., neural networks
comprising several stacked layers) and gradient based optimization (backpropagation) for
learning representations. This dissertation only employs a set of deep neural networks referred
to as feedforward neural networks. We summarize common classes of feedforward neural
networks below.

Feedforward neural networks: This is the most commonly used class of modern neural
networks. A feedforward neural network fθ with parameters θ is a composition of N ≥ 1
arbitrary (usually, differentiable) functions f1, f2, · · · , fN that map an input x ∈ dom(f1) to
an output y ∈ range(fN) via the function composition fθ = fN ◦ fN−1 ◦ · · · ◦ f2 ◦ f1.

Depending on the type of functions fi, i ∈ {1, · · · , N}, there exist several types of
feedforward networks. The most important types of feedforward networks are:

• Multilayer perceptrons (MLPs), where each function fi is an affine transform of the
form y = fi(x; θ) = Wix + bi
• Convolutional neural networks (CNNs), where each function fi is a discrete transposed
convolution with a kernel K, i.e., fi(x) = x∗K, where ∗ is the transposed convolution
operator
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• Graph neural networks (GNNs), where the inputs x (and optionally, outputs y) are
graph structured and each function fi is usually a permutation-invariant computation
defined over the graph (i.e., permuting the indices of nodes and edges does not affect
the output of fi).

2.7.3. Backpropagation

The loss function in Eq. 2.7.1 is commonly optimized by gradient descent, to gradually
update the parameters θ of the model fθ (i.e., the neural network). The empirical risk
function Remp is minimized by using the following gradient-descent update rule:

θi+1 ← θi − η∇θRemp(fθ) (2.7.2)

Backpropagation: In feedforward neural networks, the set of learnable parameters θ
are distributed across several hidden layers. To enable updates to all of these parameters,
most of which do not explicitly appear in the empirical risk computation, the widely adopted
solution is backpropagation. At its core, backpropagation is simply the application of the
chain rule of multivariate calculus to gradient-based optimization. Assume that the parameter
set θ is a union of disjoint mutually exclusive parameter sets θ1, θ2, · · · , θN such that θi is
the set of parameters of the function fi, and the feedforward neural network specified by
fθ is fθN ◦ fθN−1 ◦ · · · ◦ fθ2 ◦ fθ1 . Without loss of generality, we assume the loss function
Remp(fθ) is subdifferentiable over the parameter space θ. This accommodates several classes
of operations that are typical of empirical risk computation, such as pooling operations,
sorting, and so on. Backpropagation first computes gradient updates for the outermost
parameter set θN , as θN ← θN − η ∂Remp(fθ)

∂θN
. Subsequently, the inner layers of parameters are

gradually expanded, one layer at a time, until the chain rule traces back to the parameter set
θ1. We now specify gradient descent update rules for inner (hidden) layer parameters θN−1

through θ1. We use xi to denote the output of the feedforward network at the ith layer, i.e.,
xi = fθi(fθi−1(· · · fθ1(x))).

Remp(fθ(x)) = Remp(fθN (fθN−1(· · · fθ1(x))))

θN ← θN − η
∂Remp(fθN (fθN−1(· · · fθ1(x))))

∂θN

θN−1 ← θN−1 − η
∂Remp(fθN (xN−1))

∂xN−1

∂xN−1

∂θN−1

· · ·

θ1 ← θ1 − η
∂Remp(fθi(fθi−1(· · · fθ1(x))))

∂fθ1(x)
∂fθ1(x)
∂θ1

(2.7.3)
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In practice, gradient computation for several common operations can be automated, enabling
easy implementation while also reducing scope for error. We discuss common approaches to
algorithmic differentiation in the next section.

2.8. Differentiable programming
The ability to compute derivatives of functions is an essential tool in several disciplines

of science and engineering. In the context of this dissertation, several problems in robotics,
computer vision, graphics, and machine learning are cast into the framework of gradient-based
optimization. However, computing gradients by hand is both cumbersome and is prone to
human error-factors. Differentiable programming (also sometimes referred to as algorithmic
or automatic differentiation) is a set of tools that enables automated computation of the
derivates of a function (a program) by repeated application of the chain rule of calculus.

2.8.1. Computational graphs and explicit autodifferentiation

We review the idea of a computational graph, which is central to modern differentiable
programming, and by extension, machine learning. Formally, a computational graph is a
directed acyclic graph (DAG) where each node corresponds to an elementary computation, and
(directed) edges indicate progam control flow. Elementary computations include arithmetic,
trigonometric, and other analytical differentiable functions, as well as other subdifferentiable
functions such as pooling, ranking, and more. In a differentiable programming framework,
these elementary computations have manually specified derivatives. A wide range of higher-
order functions, including large neural networks with branches and conditionals, can be
constructed by composing such elementary computations using operators for which manual
derivative specifications exist. Popular modern frameworks for large-scale differentiable
programming include PyTorch [105], TensorFlow [106], and JAX [107].

An example of the function 3(xy + z) is shown in Fig. 4.2. By definition, computa-
tional graphs are hierarchical, and composable. Any function that can be represented by a
computational graph is amenable to algorithmic differentiation by application of the chain
rule.

The program or function whose derivatives are being automatically computed is referred
to as the forward or primal program. The intermediate computations are called primals.

Forward mode autodifferentiation: In the forward mode (also referred to as the
tangent mode), primals and their derivatives are all computed in a single execution of the
primal program. This scheme steps through all branches, unrolls control loops, inlines all
functions, and generates additional variables to hold derivatives (referred to as tangents)
with respect to each leaf (input) node. The complexity of this program scales linearly with
increasing dimensionality of the input.
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Reverse mode autodifferentiation: In the reverse mode (also referred to as the adjoint
mode), primals and their derivatives are computed in two program executions, each in a
different direction. The first execution runs the primal program, while logging all intermediate
variables and the sequence of operations. Once this halts, the second execution begins in
the reverse direction, tracing the computational graph backwards and computing the chain
rule backwards. Reverse mode autodifferentiation is the mode employed when implementing
backpropagation in a differentiable programming framework.

Forward vs reverse mode autodifferentiation: Both the forward and reverse modes
have complementary strengths and weaknesses. The reverse mode does not add too much
overhead on the actual program execution, whereas the forward mode execution slows
down linearly with increasing input dimensionality. On the other hand, reverse mode
autodifferentiation imposes an additional overhead – the need to cache intermediate values
of primals, which is cumbersome as the output dimensionality increases. For deep neural
networks, reverse mode is the preferred autodifferentiation mode as we derivative computation
with respect to thousands, if not millions, of parameters.

Explicit audodifferentiation: Differentible programming frameworks enable the flexi-
bile specification of arbitray computation flows (branches, conditionals, recursive functions);
scenarios where an analytical expression for the derivative may not exist. This is enabled by
flattening out branches by pruning other branches that are not taken, unrolling any loops,
inlining functions, and reparameterizing recursion as iteration. We refer to this as explicit
autodifferentiation and is the preferred technique for imperative programs.

2.8.2. The adjoint method and implicit autodifferentiation

There exist several classes of functions for which explicit autodifferentiation is cumbersome,
or even infeasible. For example, consider a function that specifies a constrained optimization
problem. An imperative program would merely unroll, inline, and flatten the program to
build a computational graph. However, gradients through this graph do not necessarily satisfy
the constraints imposed on the gradient due to the nature of the function. Another key issue
with explicit autodifferentiation is that unrolling extremely long loops leads to vanishing or
exploding gradients. We will now review key ideas in implicit autodifferentiation, primarily
the discrete-time adjoint method.

Consider a function specified implicitly (i.e., as a constraint set) g(x, θ) = 0, with θ being
a function 8 of x. Let θ∗(x) be a point in the constraint set, such that g(x, θ∗(x)) = 0. By

8If θ were to be independent of x, an explicit differentiation scheme could have been applied instead.
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implicit differentation, one may compute the gradient of the function g() w.r.t. x as follows:
∂g(x, θ∗(x))

∂x
= 0 =⇒ ∂g(x, θ∗)

∂x
+ ∂g(x, θ∗)

∂θ∗
∂g(x, θ∗(x))

∂x
= 0

=⇒ ∂g(x, θ∗(x))
∂x

= −
(
∂g(x, θ∗)
∂θ∗

)−1
∂g(x, θ∗)

∂x

(2.8.1)

This is a remarkable result, in that the resulting gradient depends solely on the input and the
output, and does not require unrolling of the (typically iterative) function g. For an in-depth
review of implicit differentiation and its connections with modern deep learning, we refer to
the excellent tutorial by Kolter et al. [108].

2.8.3. Autodifferentiation implementation: Tracing and program
transformation

Tracing (Taping): The most common implementation of autodifferentiation used by
frameworks such as Tensorflow [106] is tracing (sometimes referred to as taping). When
the forward program is executed, tracing records intermediate values into a tape (a cache)
linearly. In a subsequent replay of this trace, derivative programs are compiled.

Program transformation: While the partial derivatives above can be computed by
graph-based automatic differentation frameworks [105, 106, 107], there has been renewed
interest in program transformation. In program—or source—transformation, adjoints of each
elementary operation (kernel) are computed at runtime to generate derivative programs.

2.9. Computer graphics
This dissertation also builds atop recent advances in the computer graphics community

along the lines of differentiable rendering and simulation.

2.9.1. Realistic image synthesis (Rendering)

In computer graphics, rendering refers to the process of converting a scene description into
an 2D image of a scene. These scene descriptions typically include the form and placement
of 3D objects in an environment, the material properties associated with these objects (e.g.,
wood, plastic, metal), the location and geometry of light sources in the environment, and the
properties of a (virtual) camera used to capture a (virtual) image of the scene.

The complexity of this forward simulation problem can vary, depending on the assumptions
made by the underlying rendering algorithm. For example, a simple lighting and shading
model can lead to higher-performance simulations, albeit at the cost of accuracy – the
resulting images may lack many important real-world shading cues, such as shadows or
complex interreflection effects. More complicated lighting and shading models exist, including
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so-called “physically-based” models that aim to fully simulate the light transport and image
formation process, typically relying on large-scale Monte Carlo simulations to resolve a
complex high-dimensional integration problem.

2.9.2. Differentiable rendering

The simpler shading models readily admit differentiable implementations, where image
gradients can be computed with respect to variations in the scene description parameters [109,
110, 111, 112]. Despite the limitations of the underlying image formation models here,
these simple differentiable renderers have demonstrated the ability to solve many interesting
inverse problems in computer vision. Moreover, the integration of differentiable renderers into
larger end-to-end ML architectures is proving to be a very fruitful and powerful application of
their capabilities: many applications – from larger-scale shape-from-shading computer vision
problems to simulation-to-real policy training for robots in reinforcement learning – are all
benefiting from the inclusion of differentiable models of shading. Furthermore, recent works
in the computer graphics literature are exploring the design of efficient Monte Carlo-based
differentiable physically-based renderers, allowing for even more accurate models of image
formation to be integrated in end-to-end architectures [113, 114].

2.10. Context and open challenges
To successfully execute meaningful real-world tasks, each subsystem of the sense-plan-act

computation model needs to solve extremely challenging sub-problems. These challenges are
further exacerbated by the compounding errors through each subsystem and across each time
step. This renders straightforward ‘drop-in’ solutions—that merely ‘replace’ these components
with modern neural networks—infeasible. In this dissertation, we discuss alternative options
to such end-to-end replacement, arguing in favour of a more modular and structured paradigm.
We present first steps towards rethinking the SPA subsystem in the context of modern machine
learning methods by tackling the following open challenges.

Deep learning for visual SLAM: While visual SLAM has progressed leaps and bounds
in the years leading up to 20129, deep learning is yet to significantly impact the visual SLAM
research landscape. Some notable applications of deep learning to visual SLAM include feature
extraction and matching modules like SuperPoint [115] and SuperGlue [116] respectively,
which are increasingly being adopted as drop-in feature extractors and matchers. However,
the remainder of the visual SLAM pipeline remains largely unchanged. In this dissertaion,
we present an alternative approach to thinking about visual SLAM as a large, differentiable
function comprising several subsystems. This view enables replacing relevant parts of visual
SLAM pipelines with modern machine learning techniques, while retaining components of
9The year 2012 was when modern deep learning began to dominate the areas of visual recognition.
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classical system that need not be re-learnt. This paves the way towards learning flexible,
interpretable map representations tailored to downstream task performance signals.

Compact representations for symbolic planning: Existing symbolic planners fail
to produce effective plans on long-horizon tasks, where some learning-based approaches to
planning have achieved state-of-the-art results by pruning the state-space of search-based
planners. However, such approaches require an additional learning phase on each problem
domain for performant planning. We leverage the inherent hierarchy in a 3D scene to
devise fast pruning procedures that enable classical planners to match, and outperform,
state-of-the-art learning-based planners.

Gradient flow across large computation graphs: In the work presented in the
subsequent sections, we extensively leverage ideas from the differentiable programming
community to enable specifying our knowledge about the world in the form of differentiable
world programs. We demonstrate that it is possible to build very large and structured
differentiable programs while preserving the quality of gradients by reparameterizing non-
differentiable operations or by leveraging program transformation.

State-less visuomotor control: State-of-the-art physically-based differentiable render-
ing systems have shown impressive results in extracting 3D scene geometry. However, they do
not generalize to scenes with dynamic/interactive objects. We augment these differentiable
rendering engines with differentiable physics engines that provide a principled model of world
dynamics. This novel combination enables extremely challenging tasks, such as visuomotor
control based on a single image, or system identification from a small set of frames in a
video. The availability of an accurate and efficient differentiable simulator as a module in
modern machine learning experimentation frameworks will also immediately facilitate its
incorporation in larger end-to-end learning architectures that can leverage such capabilities.
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Chapter 3

Prologue to Article 1

This article was published and presented at the IEEE International Conference on Robotics
and Automation (ICRA) 2020. This was joint work with Ganesh Iyer and Liam Paull. At
the time, Ganesh Iyer was a masters student at Carnegie Mellon University, USA.

Contribution statement: The core idea of gradSLAM was conceived by the author of
this dissertation. This was refined over regular meetings with Liam Paull and Ganesh Iyer.
The author implemented the bulk of the gradSLAM system. Ganesh Iyer implemented the
differentiable PointFusion framework and carried out experiments on a real video sequence.
The author and Liam Paull jointly prepared the manuscript.

After this manuscript was submitted to ICRA, Soroush Saryazdi led the refurbishing of the
codebase into what eventually became the gradSLAM PyTorch library. The author carried
out regular, extensive code reviews and testing to ensure correctness and reproducibility.
Other major contributors to the gradSLAM library include Nikhil Varma Keetha, Sree Sai
Harsha, and Abhishek Jain. This project also greatly benefitted by support from Prof. Derek
Nowrouzezahrai and Prof. James Forbes.

Note: What follows is a slightly abridged version of the ICRA publication, with additional
qualitative results that we had to leave out of the conference paper due to a hard space limit
of six pages.





Chapter 4

Article 1: gradSLAM: Dense SLAM meets
automatic differentiation

Abstract
Blending representation learning approaches with simultaneous localization and mapping

(SLAM) systems is an open question, because of their highly modular and complex nature.
Functionally, SLAM is an operation that transforms raw sensor inputs into a distribution over
the state(s) of the robot and the environment. If this transformation (SLAM) were expressible
as a differentiable function, we could leverage task-based error signals to learn representations
that optimize task performance. However, several components of a typical dense SLAM system
are non-differentiable. In this work, we propose ∇SLAM (gradSLAM), a methodology for
posing SLAM systems as differentiable computational graphs, which unifies gradient-based
learning and SLAM. We propose differentiable trust-region optimizers, surface measurement
and fusion schemes, and raycasting, without sacrificing accuracy. This amalgamation of dense
SLAM with computational graphs enables us to backprop all the way from 3D maps to 2D
pixels, opening up new possibilities in gradient-based learning for SLAM1.

4.1. Introduction
Simultaneous localization and mapping (SLAM) has—for decades—been a central problem

in robot perception and state estimation. A large portion of the SLAM literature has focused
either directly or indirectly on the question of map representation. This fundamental choice
dramatically impacts the choice of processing blocks in the SLAM pipeline, as well as all other
downstream tasks that depend on the outpus of the SLAM system. Of late, gradient-based
learning approaches have transformed the outlook of several domains (Eg. image recognition
[117], language modeling [118], speech recognition [119]). However, such techniques have had

1Video abstract: https://youtu.be/2ygtSJTmo08

https://youtu.be/2ygtSJTmo08


Fig. 4.1. ∇SLAM (gradSLAM) is a fully differentiable dense simultaneous localization
and mapping (SLAM) system. The central idea of ∇SLAM is to construct a computational
graph representing every operation in a dense SLAM system. We propose differentiable
alternatives to several non-differentiable components of traditional dense SLAM systems,
such as optimization, odometry estimation, raycasting, and map fusion. This creates a
pathway for gradient-flow from 3D map elements to sensor observations (e.g., pixels). We
implement differentiable variants of three dense SLAM systems that operate on voxels, surfels,
and pointclouds respectively. ∇SLAM thus is a novel paradigm to integrate representation
learning approaches with classical SLAM.

limited success in the context of SLAM, primarily since many of the elements in the standard
SLAM pipeline are not differentiable. A fully differentiable SLAM system would enable
task-driven representation learning since the error signals indicating task performance could
be back-propagated all the way through the SLAM system, to the raw sensor observations.

This is particularly true for dense 3D maps generated from RGB-D cameras, where
there has been a lack of consensus on the right representation (pointclouds, meshes, surfels,
etc.). Several methods have demonstrated a capability for producing dense 3D maps from
sequences of RGB or RGB-D frames [85, 86, 87]. However, none of these methods are able
to solve the inverse mapping problem, i.e., answer the question: “How much does a specific
pixel-measurement contribute to the resulting 3D map"? Formally, we desire an the expression
that relates a pixel in an image (or in general, a sensor measurement s) to a 3D mapM
of the environment. We propose to solve this through the development of a differentiable
mapping functionM = GSLAM(s). Then the gradient of that mapping ∇sM can intuitively
tell us that perturbing the sensor measurement s by an infinitesimal δs causes the mapM to
change by ∇sGSLAM(s)δs.

Central to our goal of realizing a fully differentiable SLAM system are computational
graphs, which underlie most gradient-based learning techniques. We make the observations
that, if an entire SLAM system can be decomposed into elementary operations, all of which
are differentiable, we could compose these elementary operations2 to preserve differentiability.
However, modern dense SLAM systems are quite sophisticated, with several non-differentiable
subsystems (optimizers, raycasting, surface mapping), that make such a construct challenging.

2Again, using differentiable composition operators.
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We propose∇SLAM (gradSLAM), a differentiable computational graph view of SLAM. We
show how all non-differentiable functions in SLAM can be realised as smooth mappings. First,
we propose a differentiable trust region optimizer for nonlinear least squares systems. Building
on it, we present differentiable strategies of mapping, raycasting, and global measurement
fusion.

The ∇SLAM framework is very general, and can be extended most dense SLAM systems
for differentiability. In Sec. 4.4, we provide three examples of SLAM systems that can
be realized as differentiable computation graphs: implicit-surface mapping (Kinectfusion
[85]), surfel-based mapping (PointFusion [87]), and iterative closest point (ICP) mapping
(ICP-SLAM). We show that the differentiable approaches maintain similar performance to
their non-differentiable counterparts, with the added advantage that they allow gradients to
flow through them.

To foster further research on differentiable SLAM systems and their applications to
spatially-grounded learning, ∇SLAM is available as an open-source PyTorch framework. Our
project page and code can be accessed at https://gradslam.github.io.

4.2. Related Work
Several works in recent years have applied recent machine learning advances to SLAM or

have reformulated a subset of components of the full SLAM system in a differentiable manner.

4.2.1. Learning-based SLAM approaches

There is a large body of work in deep learning-based SLAM systems. For example,
CodeSLAM [99] and SceneCode [120] attempt to represent scenes using compact codes
that represent 2.5D depth maps. DeepTAM [121] trains a tracking network and a mapping
network, which learn to reconstruct a voxel representation from a pair of images. CNN-SLAM
[98] extends LSD-SLAM [89], a popular monocular SLAM system, to use single-image
depth predictions from a convnet. Another recent trend has been to try to formulate the
SLAM problem over higher level features such as objects, which may be detected with
learned detectors [122][123][124]. DeBrandandere et al. [125] perform lane detection by
backpropagating least squares residuals into a frontend module. Recent work has also
formulated the passive [126] and active localization problems [127, 128] in an end-to-end
differentiable manner. While all of these approaches try to leverage differentiability in
submodules of SLAM systems (eg. odometry, optimization, etc.), there is no single framework
that models an entire SLAM pipeline as a differentiable graph.
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4.2.2. Differentiable visual odometry

The beginnings of differentiable visual odometry can be traced back to the seminal
Lucas-Kanade iterative matching algorithm [129]. Kerl et al. [83]3 apply the Lucas-Kanade
algorithm to perform real-time dense visual odometry. Their system is differentiable, and
has been extensively used for self-supervised depth and motion estimation [130, 97, 131].
Coupled with the success of Spatial Transformer Netowrks (STNs) [132], several libraries
(gvnn [133], kornia [134]) have since implemented these techniques as differentiable layers,
for use in neural networks.

However, extending differentiability beyond the two-view case (frame-frame alignment) is
not straightforward. Global consistency necessitates fusing measurements from live frames
into a global model (model-frame alignment), which is not trivially differentiable.

4.2.3. Differentiable optimization

Some approaches have recently proposed to learn the optimization of nonlinear least
squares objective functions. This is motivated by the fact that similar cost functions have
similar loss landscapes, and learning methods can help converge faster, or potentially to
better minima.

In BA-Net [135], the authors learn to predict the damping coefficient of the Levenberg-
Marquardt optimizer, while in LS-Net [136], the authors entirely replace the Levenberg-
Marquard optimizer by an LSTM netowrk [137] that predicts update steps. In GN-Net
[138], a differentiable version of the Gauss-Newton loss is used to show better robustness
to weather conditions. RegNet [139] employs a learning-based optimization approach based
on photometric error for image-to-image pose registration. However, all the aforementioned
approaches require the training of additional neural nets and this requirement imposes severe
limitations on the generalizability. OptNet [140] introduces differentiable optimization layers
for quadratic programs, that do not involve learnable parameters.

Concurrently, Grefenstette et al. [141] propose to unroll optimizers as computational
graphs, which allows for computation of arbitrarily higher order gradients. Our proposed
differentiable Levenberg-Marquardt optimizer is similar in spirit, with the addition of gating
functions to result in better gradient flows.

In summary, to the best of our knowledge, there is no single approach that models the
entire SLAM pipeline as a differentiable model, and it is this motivation that underlies
∇SLAM.

3The formulation first appeared in Steinbrüker et al. [82].
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4.3. ∇SLAM
In this section we will overview our proposed method for ∇SLAM and also detail the

individual differentiable sub-components.

4.3.1. Preliminaries: Computational graphs

Fig. 4.2. A computational graph. Nodes
in red represent variables. Nodes in blue repre-
sent operations on variables. Edges represent
data flow. This graph computes the function
3(xy + z). Dashed lines indicate (local, i.e.,
per-node) gradients in the backward pass.

In gradient-based learning architectures,
all functions and approximators are conven-
tionally represented as computational graphs.
Formally, a computation graph is a directed
acyclic graph G = (V , E), where each node
v ∈ V holds an operand or an operator, and
each (directed) edge e ∈ E indicates the con-
trol flow in the graph. Further, each node in
the graph also specifies computation rules for
the gradient of the outputs of the node with
respect to the inputs to the node. Compu-
tational graphs can be nested and composed
in about any manner, whilst preserving differentiability. An example computation graph for
the function 3(xy + z) is shown in Fig. 4.2.

In a standard SLAM pipeline there are several subsystems/components that are not
differentiable (i.e., for a few forward computations in the graph, gradients are unspecifiable).
For example, in the context of dense 3D SLAM [85][87], nonlinear least squares modules,
raycasting routines, and discretizations are non-diffrentiable. Further, for several operations
such as index selection / sampling, gradients exist, but are zero almost everywhere, which
result in extremely sparse gradient flows.

4.3.2. Method Overview

The objective of ∇SLAM is to make every computation in SLAM exactly realised as a
composition of differentiable functions4. Broadly, the sequence of operations in dense SLAM
systems can be termed as odometry estimation (frame-to-frame alignment), map building
(model-to-frame alignment/local optimization), and global optimization. An overview of the
approach is shown in 4.1.

First, we provide a description of the precise issues that render nearly all of the aforemen-
tioned modules non-differentiable, and propose differntiable counterparts for each module.
Finally, we show that the proposed differentiable variants allow the realization of several

4Wherever exact differentiable realizations are not possible, we desire as-exact-as-possible realizations.
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classic dense mapping algorithms (KinectFusion [85], PointFusion [87], ICP-SLAM) in the
∇SLAM framework.5

4.3.3. ∇LM: A differentiable nonlinear least squares solver

Fig. 4.3. Computational graph for ∇LM

Most state-of-the-art SLAM solutions op-
timize nonlinear least squares objectives to
obtain local/globally consistent estimates of
the robot state and the map. Such objectives
are of the form 1

2
∑ r(x)2, where r(x) is a

nonlinear function of residuals. Example ap-
plication scenarios that induce this nonlinear
least squares form include visual odometry, depth measurement registration (e.g., ICP), and
pose-graph optimization among others. Such objective functions are minimized using a succes-
sion of linear approximations (r(x + δx)|x=x0 = r(x0) + J(x0)δx), using Gauss-Newton (GN)
or Levenberg-Marquardt (LM) solvers. GN solvers are extremely sensitive to intialization,
numerical precision, and moreover, provide no guarantees on non-divergent behavior. Hence
most SLAM systems use LM solvers.

Fig. 4.4. An example curve fitting problem,
showing that ∇LM performs near-identical to
LM, with the added advantage of being fully
differentiable.

Trust-region methods (such as LM) are
not differentiable as at each optimization
step, they involve recalibration of optimizer
parameters, based on a lookahead operation
over subsequent iterates [142]. Specifically,
after a new iterate is computed, LM solvers
need to make a discrete decision between
damping or undamping the linear system.
Furthermore, when undamping, the iterate
must be restored to its previous value. This
discrete switching behavior of LM does not
allow for gradient flow in the backward pass.

We propose a computationally efficient
soft reparametrization of the damping mecha-
nism to enable differentiability in LM solvers.
Our key insight is that, if r0 = r(x0)Tr(x0)
is the norm of the error at the current iterate, and r1 = r(x1)Tr(x1) is the norm of the error
at the lookahead iterate, the value of r1 − r0 determines whether to damp or to undamp.
And, only when we choose to undamp, we revert to the current iterate. We define two smooth

5That is, realizable as fully differentiable computational graphs.

68



M

I
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Pa

soft association exp(− r(Pvalid)
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2σ2 )

K(Pa) Pvalid

update surface measurement

map fusion

Fig. 4.5. Computation graph for the differentiable mapping module. The uncolored boxes
indicate intermediate variables, while the colored boxes indicate processing blocks. Note
that the specific choice of the functions for update surface measurement and map fusion
depend on the map representation used.

gating functions Qx and Qλ based on the generalized logistic function [143] to update the
iterate and determine the next damping coefficient.

λ1 = Qλ(r0, r1) = λmin + λmax − λmin
1 +De−σ(r1−r0)

Qx(r0, r1) = x0 + δx0

1 + e−(r1−r0)

(4.3.1)

where D and σ are tunable parameters that control the falloff [143]. Also [λmin, λmax] is the
range of values the damping function can assume. Notice that this smooth parameterization
of the LM update allows the optimizer to be expressed as a fully differentiable computational
graph (Fig. 4.3).

It must be noted that this scheme can be modified to accommodate other kinds of gating
functions, such as hyperbolic curves. We however, choose the above gating functions, as
they provide sufficient flexibility. A thorough treatment of the impact of the choice of gating
functions on performance is left for future work.

4.3.4. Differentiable mapping

Another non-smooth operation in dense SLAM is map construction (surface measurement).
For example, consider a global mapM being built in the reference frame of the first image-
sensor measurement I0. When a new frame Ik arrives at time k, dense SLAM methods
need to align the surface measurement being made in the live frame, with the map M.
Notwithstanding the specific choice of map representation (i.e., pointclouds, signed-distances,
surfels), a generic surface alignment process comprises the following steps.

(1) The mapM is intersection-tested with the live frame, to determine the active set Ma

of map elements, and the active set of image pixels Pa. The remaing map elements
are clipped.

(2) Active image pixels Pa are checked for measurement validity (e.g., missing depth
values / blurry pixels, etc.). This results in a valid active set of image pixls Pvalid
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(3) The set of pixels in Pvalid is backprojected to 3D and compared with the map. At this
stage, it must be discerned whether these pixels measure existing elements inMa, or
if they measure a new set of elements that need to be added to the global map.

(4) Once the above decision is made, these surface measurements are fused into the
global map. The choice of the fusion mechanism is dependent on the underlying
representation of each map element (points, surfels, TSDF, etc.).

The above process involves a number of differentiable yet non-smooth operations (clipping,
indexing, thresholding, new/old decision, active/inactive decision, etc.). Although the above
sequence of operations can be represented as a computation graph, it will not necessarily
serve our purpose here since, even though (local) derivatives can be defined for operations
such as clipping, indexing, thresholding, and discrete decisions, these derivatives exist only
at that single point. The overall function represented by the computation graph will have
undefined gradients "almost everywhere" (akin to step functions). We propose to mitigate this
issue by making the functions locally smooth. Concretely, we propose the following corrective
measures.

(1) The surface measurement made by each valid pixel p in the live frame (i.e., p ∈
Pvalid) is not a function of p alone. Rather, it is the function of the pixel p and its
(active/inactive) neighbours nbd(p), as determined by a kernel K(p,nbd(p)).

(2) When a surface measurement is transformed to the global frame, rather than using
a hard (one-one) association between a surface measurement and a map element,
we use a soft association to multiple map elements, in accordance with the sensor
characteristics.

(3) Every surface measurement is, by default, assumed to represent a new map element,
which is passed to a differentiable fusion step (cf. Sec 4.3.5).

The kernel K(p, nbd(p)) can be a discrete approximation (e.g., constant within a pixel)
or can vary at the subpixel level, based on the choice of the falloff function. For faster
computation and coarse gradients, we use a bilinear interpolation kernel. While bilinear
interpolation is a sensible approximation for image pixels, this is often a poor choice for use
in 3D soft associations. For forming 3D associations, we leverage characteristics of RGB-D
sensors in defining the soft falloff functions. Specifically, we compute, for each point P in the
live surface measurement, a set of closest candidate points in a region exp

(
− r(P )2

2σ2

)
, where

r(P ) is the radial depth of the point from the camera ray, and σ affects the falloff region.6

4.3.5. Differentiable map fusion

The aforementioned differentiable mapping strategy, while providing us with a smooth
observation model, also causes an undesirable effect: the number of map elements increases

6This is a well-known falloff function, usually with Kinect-style depth sensors [87, 144, 145].
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in proportion with exploration time. However, map elements should ideally increase with
proportion to the explored volume of occupied space, rather than with exploration time.
Conventional dense mapping techniques (e.g., KinectFusion [85], PointFusion [87]) employ
this through fusion of redundant observations of the same map element. As a consequence,
the recovered map has a more manageable size, but more importantly, the reconstruction
quality improves greatly. While most fusion strategies are differentiable (eg. [85, 87]), they
impose falloff thresholds that cause an abrupt change in gradient flow at the truncation point.
We use a logistic falloff function, similar to Eq. 4.3.1, to ease gradient flow through these
truncation points.

4.3.6. Differentiable ray backprojection

pc

Rc

d(pc)

intersect ( pc,M )

vc

Φ(Vc)

N (d(pc), σr)

σr

Fig. 4.6. Ray differentials: Inset shows the
computation graph of the ray value computa-
tion. The dashed rectangle is not differentiable,
and its derivatives are approximated as shown
in Eq 4.3.2

Some dense SLAM systems [85, 86] per-
form global pose estimation by raycasting
a map to a live frame. Such an operation
inherently involves non-differentiable steps.
First, from each pixel in the image, a ray
from the camera is backprojected, and its
intersection with the first map element along
the direction of the ray is determined. This
involves marching along the ray until a map
element is found, or until we exit the bounds
of reconstruction. Usual (non-differentiable)
versions of ray marching use max-min accel-
eration schemes [146] or rely on the existence
of volumetric signed distance functions [85].
Several attempts have been made to make
the raycasting operation differentiable. Scene
representation networks [147] proposes to
predict ray marching steps using an LSTM.
In other works such as DRC [148] and WS-
GAN [149], the authors pool over all voxels
along a ray to compute the potential of a ray. In this work, we make one enhancement to the
ray pooling operation. We pool over all voxels along a ray, but have a Gaussian falloff defined
around the depth measurement of the image pixel through which the ray passes. Further, we
use finite differences to compute the derivative of the ray potential with respect to the pixel
neighbourhood. We use the finite differences based ray differentials defined in Igehy et al.
[150]. If pc is the image pixel that the ray Rc pierces, and Vc = {vc} is the set of all voxels it
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pierces, then the aggregated value of the ray is denoted vc (with respect to an aggregation
function Φ(ψ(vc) ∀vc ∈ Vc)). The aggregation function simply multiplies each value ψ(vc)
with the density of the Gaussian fallof at vc, and normalizes them. Similarly vl, vr, vu, and
vb are the aggregated values of rays emanating from the pixels to the left, right, above, and
below pc respectively. Then, the partial derivative ∂vc

∂c
can be approximated as

∂vc
∂pc

=
(vr − vl)/2

(vu − vd)/2

 (4.3.2)

An illustration of the ray differential computation scheme can be found in Fig. 4.6.

4.4. Case Studies: KinectFusion, PointFusion, and ICP-
SLAM

To demonstrate the applicability of the ∇SLAM framework, we leverage the differentiable
computation graphs specified in Sec 4.3 and compose them to realise three practical SLAM
solutions. In particular, we implement differentiable versions of the KinectFusion [85]
algorithm that constructs TSDF-based volumetric maps, the PointFusion [87] algorithm that
constructs surfel maps, and a pointcloud-only SLAM framework that we call ICP-SLAM.

4.4.1. KinectFusion

Recall that KinectFusion [85] alternates between tracking and mapping phases. In the
tracking phase, the entire up-to-date TSDF volume is raycast onto the live frame, to enable
a point-to-plane ICP that aligns the live frame to the raycast model. Subsequently, in the
mapping phase, surface measurements from the current frame are fused into the volume, using
the TSDF fusion method proposed in [85]. The surface measurement is given as (cf.[85])

sdf(p) = trunc(‖K−1x‖−1
2 ‖t− p‖2 − depth(x))

trunc(sdf) = min(1, sdf
µ

)(sign(sdf)) iff sdf ≥ −µ
(4.4.1)

Here, p is the location of a voxel in the camera frame, and x = bπ(Kp)c is the live frame
pixel to which p projects to. µ is a parameter that determines the threshold beyond which a
surface measurement is invalid. However, we note that the floor operator is non-differentiable
"almost everywhere". Also, the truncation operator, while differentiable within a distance
of µ from the surface, is abruptly truncated, which hinders gradient flow . Instead, we
again use a generalized logistic function [143] to create a smooth truncation, which provides
better-behaved gradients at the truncation boundary. The other steps involved here, such as
raycasting, ICP, etc. are already differentiable in the ∇SLAM framework (cf.Sec 4.3). Fusion
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of surface measurements is perfomed using the same approach as in [85] (weighted averaging
of TSDFs).

4.4.2. PointFusion

As a second example, we implement PointFusion [87], which incrementally fuses surface
measurements to obtain a global surfel map. Surfel maps compare favourably to volumetric
maps due to their reduced memory usage.7 We closely follow our differentiable mapping
formulation (cf.Sec 4.3.4) and use surfels as map elements. We adopt the fusion rules from
[87] to perform map fusion.

4.4.3. ICP-SLAM

As a baseline example, we implement a simple pointcloud based SLAM technique, which
uses ICP to incrementally register pointclouds to a global pointcloud set. In particular, we
implement two systems. The first one aligns every pair of consecutive incoming frames, to
obtain an odometry estimate (also referred to as frame-to-frame alignment or ICP-Odometry).
The second variant performs what we call frame-to-model alignment (ICP-SLAM). That is,
each incoming frame is aligned (using ICP) with a pointcloud containing the entire set of
points observed thus far.

Tmax = 10 iters Exponential Sine Sinc
GD GN LM ∇LM GD GN LM ∇LM GD GN LM ∇LM

‖apred − agt‖2 0.422 0.483 0.483 0.483 0.379 0.341 0.342 0.342 2.929 0.304 0.304 0.304
‖tpred − tgt‖2 0.606 0.50 0.550 0.550 0.222 0.359 0.360 0.360 3.024 0.304 0.304 0.040
‖wpred − wgt‖2 1.268 0.667 0.075 0.075 1.215 0.080 0.084 0.085 0.462 10−7 0.023 10−4

‖f(x)pred − f(x)gt‖2 0.716 0.160 0.163 0.160 0.666 0.148 0.152 0.148 0.700 5× 10−8 0.005 4× 10−5

Tmax = 50 iters
‖apred − agt‖2 0.365 0.275 0.231 0.275 0.486 0.429 0.434 0.434 3.329 0.380 0.380 0.380
‖tpred − tgt‖2 0.263 0.219 0.231 0.218 0.519 0.455 0.459 0.460 2.739 0.380 0.380 0.380
‖wpred − wgt‖2 1.220 0.205 0.007 0.369 1.327 0.273 0.376 0.383 0.383 2× 10−7 0.202 4× 10−5

‖f(x)pred − f(x)gt‖2 0.669 0.083 0.004 0.078 0.673 0.153 0.153 0.151 0.795 2× 10−7 0.005 3× 10−5

Tmax = 100 iters
‖apred − agt‖2 0.431 0.475 0.480 0.487 0.486 0.429 0.434 0.434 2.903 0.196 0.196 0.196
‖tpred − tgt‖2 0.466 0.311 0.378 0.323 0.519 0.455 0.459 0.460 2.847 0.196 0.196 0.196
‖wpred − wgt‖2 1.140 0.364 0.066 0.065 1.327 0.273 0.376 0.382 0.601 10−7 0.026 9× 10−5

‖f(x)pred − f(x)gt‖2 0.662 0.243 0.162 0.230 0.673 0.153 0.153 0.151 0.707 6× 10−8 0.005 4× 10−5

Table 4.1. ∇LM performs quite similarly to its non-differentiable counterpart, on a variety
of non-linear functions, and at various stages of optimization. Here, GD, GN, and LM refer
to gradient descent, Gauss-Newton, and Levenberg-Marquardt optimizers respectively.

7On the flipside, surfel-based algorithms are harder to parallelize compared to volumetric fusion.
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4.5. Experiments and results
4.5.1. Differentiable optimization

In Sec 4.3.3, we introduced two generalized logistic functions Qλ and Qx to compute the
damping functions as well as the subsequent iterates. We conduct multiple experiments to
verify the impact of this approximation on the performance (convergence speed, quality of
solution) of nonlinear least squares solvers.

We first design a test suite of nonlinear curve fitting problems (inspiration from [136]),
to measure the performance of ∇LM to its non-differentiable counterpart. We consider three
nonlinear functions, viz. exponential, sine, and sinc, each with three parameters a, t, and w.

f(x) = a exp

(
−(x− t)2

2w2

)
f(x) = sin(ax+ tx+ w)

f(x) = sinc(ax+ tx+ w)

(4.5.1)

For each of these functions, we uniformly sample the parameters p = {a, t, w} to create
a suite of ground-truth curves, and uniformly sample an initial guess p0 = {a0, t0, w0} in
the interval [−6, 6]. We sample 100 problem instances for each of the three functions. We
run a variety of optimizers (such as gradient descent (GD), Gauss-Newton (GN), LM, and
∇LM) for a maximum of 10, 50, and 100 iterations. We compute the mean squared error
in parameter space (independently for each parameter a, t, w) as well as in function space
(i.e., ‖f(x)pred − f(x)gt‖2. Note that these two errors are not necessarily linearly related, as
the interaction between the parameters and the function variables are highly nonlinear. The
results are presented in Table ??. It can be seen that ∇LM performs near-identically to LM.

Fig. 4.7. ∇LM performs comparably to LM optimizers. In this figure, we show example
curve fitting problems from the test suite.
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4.5.2. Comparitive analysis of case studies

In Sec 4.4, we implemented KinectFusion [85], PointFusion [87], and ICP-SLAM as
differentiable computational graphs. Here, we present an analysis of how each of the
approaches compare to their non-differentiable counterparts. Table 4.2 shows the trajectory
tracking performance of the non-differentiable and differentiable (∇) versions of ICP-Odometry,
ICP-SLAM, and PointFusion. We observe no virtual change in performance when utilizing
the differentiable mapping modules and ∇LM for optimization. This is computed over split
subsets of the living_room_traj0 sequence.

We also evaluate the reconstruction quality of∇-KinectFusion with that of Kintinuous [86].
On a subsection of the living_room_traj0 sequence of the ICL-NUIM [151] benchmark, the
surface reconstruction quality of Kintinuous is 18.625, while that of differentiable KinectFusion
is 21.301 (better). However, this quantity is misleading, as Kintinuous only retains a subset
of high confidence points in the extracted mesh, while our differentiable KinectFusion outputs
(see Fig. 4.8) contain a few noisy artifacts, due to our smooth truncation functions.

KinectFusion PointFusion ICP-Odometry ICP-SLAM

Fig. 4.8. Qualitative results: On the living room lr kt0 sequence of the ICL-NUIM
dataset [151]. The reconstructions are near-identical to their non-differentiable counterparts.
However, distinct from classic SLAM approaches, these reconstructions allow for gradients to
flow from a 3D map element all the way to the entire set of pixel-space measurements of that
element.

4.5.3. Qualitative results

∇SLAM works out of the box on multiple other RGB-D datasets. Specifically, we present
qualitative results of running our differentiable SLAM systems on RGB-D sequences from
the TUM RGB-D dataset [152], ScanNet [153], as well as on an in-house sequence captured
from an Intel RealSense D435 camera.

Fig. 4.9- 4.11 show qualitative results obtained by running ∇SLAM on a variety of
sequences from the TUM RGB-D benchmark (Fig. 4.9), ScanNet (Fig. [153]), and an in-
house sequence (Fig. 4.11). These differentiable SLAM systems all execute fully on the GPU,
and are capable of computing gradients with respect to any intermediate variable (Eg. camera
poses, pixel intensities/depths, optimization parameters, camera intrinsics, etc.).
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Method ATE RPE
ICP-Odometry (non-differentiable) 0.029 0.0318

∇ICP-Odometry 0.01664 0.0237
ICP-SLAM (non-differentiable) 0.0282 0.0294

∇ICP-SLAM 0.01660 0.0204
PointFusion (non-differentiable) 0.0071 0.0099

∇PointFusion 0.0072 0.0101
KinectFusion (non-differentiable) 0.013 0.019

∇KinectFusion 0.016 0.021
Table 4.2. Performance of ∇SLAM. The differentiable counterparts perform nearly
similar to their non-differentiable counterparts (ATE: Absolute Trajectory Error, RPE:
Relative Pose Error).

Fig. 4.9. Reconstruction obtained upon running the differentiable ICP-Odometry pipeline
on a subsection of the rgbd_dataset_freiburg1_xyz sequence.

4.5.4. Analysis of Gradients

The computational graph approach of ∇SLAM allows us to recover meaningful gradients
of 2D (or 2.5D) measurements with respect to a 3D surface reconstruction. In Fig. 4.12,
the top row shows an RGB-D image differentiably transformed—using ∇SLAM—into a
(noisy) TSDF surface measurement, and then compared to a more precise global TSDF
map. Elementwise comparision of aligned volumes gives us a reconstruction error, whose
gradients are backpropagated through to the input depthmap using the computational graph
maintained by ∇SLAM (and visualized in the depth image space). In the second row, we
intentionally introduce an occluder that masks out a small (40× 40) region in the RGB-D
image, thereby introducing a reconstruction artifact. Computing the volumetric error between
the global and local occluded TSDF volumes and inspecting the gradients with respect to
the input indicates the per pixel contribution of the occluding surface to the volumetric
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Fig. 4.10. Qualitative results on sequences from the ScanNet [153] dataset. Owing to
GPU memory constraints, we use each of the differentiable SLAM systems (∇KinectFusion,
∇PointFusion, and ∇ICP-SLAM) to reconstruct parts of the scene. We also show outputs
from BundleFusion [154] for reference.

error. Thus, ∇SLAM provides a rich interpretation of the computed gradients: they denote
the contribution of each pixel towards the eventual 3D reconstruction.

4.5.5. Application: RGB and depth completion

In Fig. 4.13, we similarly introduce such occluders (top row) and pixel noise (bottom row)
in one of the depth maps of a sequence and reconstruct the scene using ∇PointFusion. We
then calculate the chamfer distance between the noisy and true surfel maps and backpropogate
the error with respect to each pixel. The minimized loss leads to the targeted recovery of the
noisy and occluded regions. We additionally show an RGB-D image completion task (from
uniform noise)in Fig. 4.14.
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Fig. 4.11. In-house sequence collected from an Intel RealSense D435 camera. The
reconstruction (right) is obtained by running ∇PointFusion. Note that we do not perform
any noise removal. Differentiable noise filtering is left for future work.

Difference in gradients
Backprop

Compare

Compare
Backprop

Fig. 4.12. Analysis of gradients: ∇SLAM enables gradients to flow all the way back to
the input images. Top: An RGB-D image pair (depth not shown) is passed through ∇SLAM,
and reconstruction error is computed using a precise fused map. Backpropagation passes
these gradients all the way back to the depth map (blue map). Bottom: An explicit occluder
added to the center of the RGB-D pair. This occluder distorts the construction by creating a
gaping hole through it. But, using the backpropagated gradients, one can identify the set of
image/depthmap pixels that result in a particular area to be reconstructed imperfectly.

4.6. Conclusion
We introduce ∇SLAM, a differentiable computational graph framework that enables

gradient-based learning for a large set of localization and mapping based tasks, by providing
explicit gradients with respect to the input image and depth maps. We demonstrate a diverse
set of case studies, and showcase how the gradients propogate throughout the tracking,
mapping, and fusion stages. Future efforts will enable ∇SLAM to be directly plugged into
and optimized in conjunction with downstream tasks. ∇SLAM can also enable a variety of
self-supervised learning applications, as any gradient-based learning architecture can now be
equipped with a sense of spatial understanding.
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Fig. 4.13. End-to-end gradient propagation: (Top): A chunk of a depth map is chopped.
The resultant sequence is reconstructed using ∇PointFusion and the pointcloud is compared
to a clean one reconstructed using the unmodified depth map. The Chamfer distance between
these two pointclouds is used to define a reconstruction error between the two clouds, which is
backpropagated through to the input depth map and updated by gradient descent. (Bottom):
Similar to the Fig. 4.12, we show that ∇SLAM can fill-in holes in the depthmap by leveraging
multi-view gradient information.

Fig. 4.14. RGB-D completion using end-to-end gradient propagation: Three RGB-
D images and a noise image are passed through ∇PointFusion, and compared to a clean
reconstruction obtained from four RGB-D images. The reconstruction loss is used to optimize
the noise image by gradient descent. We can recover most of the artifacts from the raw RGB
and depth images. Note that finer features are hard to recover from a random initialization,
as the overall SLAM function is only locally differentiable.
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Chapter 6

Article 2: Taskography: Evaluating robot
task planning over large 3D scene graphs

Abstract
3D scene graphs (3DSGs) are an emerging description; unifying symbolic, topological,

and metric scene representations. However, typical 3DSGs contain hundreds of objects and
symbols even for small environments; rendering task planning on the full graph impractical.
We construct Taskography, the first large-scale robotic task planning benchmark over
3DSGs. While most benchmarking efforts in this area focus on vision-based planning,
we systematically study symbolic planning, to decouple planning performance from visual
representation learning. We observe that, among existing methods, neither classical nor
learning-based planners are capable of real-time planning over full 3DSGs. Enabling real-
time planning demands progress on both (a) sparsifying 3DSGs for tractable planning and
(b) designing planners that better exploit 3DSG hierarchies. Towards the former goal, we
propose scrub, a task-conditioned 3DSG sparsification method; enabling classical planners
to match and in some cases surpass state-of-the-art learning-based planners. Towards the
latter goal, we propose seek, a procedure enabling learning-based planners to exploit 3DSG
structure, reducing the number of replanning queries required by current best approaches by
an order of magnitude. We will open-source all code and baselines to spur further research
along the intersections of robot task planning, learning and 3DSGs.

6.1. Introduction
Real-world robotic task planning problems in large environments require reasoning over

tens of thousands of object-action pairs. Faced with long-horizon tasks and an abundance
of choices, state-of-the-art task planners struggle with an efficiency-reliability trade-off in
grounding actions towards the goal. Hence, designing actionable scene abstractions suitable



for a range of robotic tasks has drawn long-standing attention from the robotics and computer
vision communities [155, 156, 157, 158, 159, 160].

A promising approach for building symbolic abstractions from raw perception data are 3D
scene graphs (3DSGs, see Fig. 6.1) [161, 162, 163] – hierarchical representations of a scene
that capture metric, semantic, and relational information, such as affordances, properties,
and relationships among scene entities. While 3DSGs have to date been applied to simpler
planning problems like goal-directed navigation [160, 164], active object search [165], and
node classification [166], their amenability to more complex robotic task planning problems
has yet to be thoroughly evaluated.

To investigate the joint application of 3DSGs and modern task planners to complex
robotics tasks we propose Taskography: the first large-scale benchmark comprising a number
of challenging task planning domains designed for 3DSGs. Analyzing planning times and
costs on a diversity of domains in Taskography reveals that neither classical nor learning-
based planners are capable of real-time planning over full 3DSGs, however, that they become
so only when 3DSGs are sparsified.

Many real-world problems only require reasoning over a small subset of scene objects. E.g.,
the task “fetch a mug from the kitchen” primarily involves reasoning about scene elements
associated with mugs or kitchens, rendering a vast majority of the remaining environment
contextually irrelevant. Most planners aren’t able to exploit such implicitly defined task
contexts, instead spending most of their computation time reasoning about extraneous scene
attributes and actions [36] (see Fig. 6.5).

We argue that performant task planning over 3DSGs demands progress on two fronts: (a)
sparsifying 3DSGs to make planning problems tractable, and (b) designing task planners that
exploit the spatial hierarchies encapsulated in 3DSGs. To address (a), we present scrub–a
planner-agnostic strategy guaranteed to produce a minimal sufficient object set for grounded
planning problems. That is, planning on this reduced subset of scene entities suffices to
solve the planning problem defined over the full 3DSG. Classical planning over state spaces
(3DSGs) augmented by scrub outperforms state-of-the-art learning-based planners on the
majority of tasks on our benchmark, without requiring any prior learning, establishing a
strong baseline for future work in robotic task planning. To address (b), we present seek: a
procedure tailored to 3DSGs, which supplements learning-based incremental planners by
imposing 3DSG structure, ensuring all objects in the sufficient set are reachable from the
start state. In our experiments, augmenting state-of-the-art planners with seek results in
computational savings and an order of magnitude fewer replanning iterations.

In summary, we make the following contributions:
• Taskography: a large-scale benchmark to evaluate robotic task planning over

3DSGs,
• scrub: a planner-agnostic strategy to adapt 3DSGs for performant planning,

84



• seek: a procedure that enables learning-based planners to better exploit 3DSGs
We will open-source all code and baselines in Taskography-API, enabling the construc-

tion of new task planning domains, and benchmarking the performance of newer learning-based
planners.

6.2. Related work
Early research in symbolic planning was centered around optimal planning [27, 28,

29, 30, 38]; planners producing solutions that preserve cost or plan length optimality. These
methods are computationally expensive and thereby untenable to even moderately sized
problems. This spurred work on satisficing planners that forgo optimal solutions for cheaper,
feasible plans. Notable paradigms include regression planning [24], tree search [167], and
heuristic search [34, 25, 26, 168, 169]. Whilst the many successes of heuristic planners [170,
171], computing low-cost informative heuristics is deterred by many extraneous objects [40,
36]; an inauspicious characteristic of large 3DSGs.

Robot task planning techniques have focused on constructing more effective represen-
tations to plan upon [172, 173, 174]. There are also approaches that integrate task and
motion planning [56, 175, 176]–further demonstrated in hierarchical task space [177]–but
which fall outside the scope of our work. Several approaches exploit task hierarchies for robot
task planning [178] and control [179, 180, 181]. Different from these, our work focuses on
exploiting abstractions in spatial structure encapsulated in 3DSGs, not to be conflated with
hierarchical planners that exploit task structure [182].

State-of-the-art learning-based planners have demonstrated promising performance
in small-to-moderate problem sizes. However, techniques such as relational policy learn-
ing [183], relational heuristic learning [184], action grounding [185], program guided sym-
bolic planning [186, 187, 188, 189, 190], and regression planning networks [44] fail in
large problem instances with branching factors and operators of the order considered (see
Fig. 6.2) in the Taskography benchmark. Moreover, several planners that learn to
search [45, 191, 192, 193] depend on hard-to-obtain dense rewards or do not scale with
domain complexity [194, 195, 196].

The simplification of planning problems via pruning strategies to enable efficient
search has been explored in both propositional [197, 198, 185] and numeric [199] planning
contexts. Among these, PLOI [36] is a particularly performant learning-based approach
that leverages object-centric relational reasoning [200, 201, 202, 203] to score and prune
extraneous objects to the task. While PLOI outperforms existing classical planners on the
Taskography benchmark, it incurs a large number of replanning steps owing to inaccurate
neural network predictions; and inability to exploit 3DSG hierarchies. Our proposed seek
procedure decreases replanning steps by two orders of magnitude.
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Planning benchmarks in the symbolic planning communities have featured a variety
of tasks with time complexities ranging from polynomial (e.g., shortest-path) to NP-hard
problems (e.g., traveling salesman). There also exists a handful of environments [204, 35,
205, 206, 207] for benchmarking learned action policies from language directives and ego-
centric visual observations, task and motion planning [208], or the modelling of physical
interactions [209, 210]. Another recent benchmark [211] only supports navigation and
block-stacking tasks. However, there isn’t currently a large-scale benchmark tailored to
robotic task planning in 3DSGs with several hundreds of objects.

6.3. Background
Task planning. A task planning problem Π is a tuple 〈O,P ,A, T , C, I,G〉. As a running

example, consider the task find an apple, slice it, and place it on the counter. O is the set
of all ground objects (instances) in the problem. P is a set of properties, each defined over
one or more objects; weight(apple) = 70 grams. Predicates are subclasses of properties in
that they are boolean-valued; canPlace(apple, refrigerator) = True. A is a finite set of lifted
actions operating over object tuples; slice(apple), place(apple, counter). T is a transition
model and C denotes state transition costs. I and G are initial and goal states. A state is
an assignment of values to all possible properties grounded over objects. For the running
example, a goal state may be specified as on(apple, counter)=True and sliced(apple)=True.
Planning problems may be grounded–slice this apple, or lifted–slice an apple.

3D scene graphs (3DSGs). A 3DSG [161, 162] is a hierarchical multigraphG = (V,E)
with k ∈ {1 · · ·K} levels, where V k ∈ V denotes the set of vertices at level k. Edges originating
from a vertex v ∈ V k may only terminate in V k−1 ∪ V k ∪ V k+1 (i.e., edges connect nodes
within one level of each other). Each 3DSG in our work comprises at least 5 levels with
increasing spatial precision as we move down the hierarchy: the topmost level in the hierarchy
is a root node representing a scene. This node branches out to indicate the various floors in
the building, which in turn branches out to denote various rooms in a floor, and subsequently
places within a room. A place is a collection of objects, which may themselves contain other
objects (to allow for container types such as cabinets and refrigerators).1 At each level, edges
indicate various types of relations among nodes (e.g., at the room level, an edge indicates
the existence of a traversable path between two rooms; at the object level, edges indicate
multiple affordance relations). Each node also stores semantic attributes such as node type,
functionality, affordances, etc., following [161].

1The lowest level in [162] is a metric-semantic mesh. However since our focus is on symbolic planning, we
only require scene graph levels that contain objects.
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Fig. 6.1. A state in a planning problem specified over a 3DSG. Nodes are scene entities and store
unary predicates. Edges indicate binary predicates (relations). A goal is a conjunction of unary and
binary literals. We only show a subset of relations for brevity. E.g., if the robot executes an action
that moves it to another room, the robotInRoom relation shown in this figure will be set to False
for the room on the lower left.

6.4. Taskography
We propose Taskography: the first large scale benchmark to evaluate symbolic planning

over 3DSGs. Currently, Taskography comprises 20 challenging robotic task planning
domains totaling 3734 tasks. Different from current benchmarks for embodied AI that focus
primarily on egocentric visual reasoning [35, 212, 213, 204, 210, 206]; Taskography is
designed to evaluate symbolic reasoning over 3DSGs. To emulate the complexity of real-world
task planning problems, Taskography builds atop the Gibson [214] dataset comprising
real-world scans of large building interiors (averaging 2-3 floors per building; 7 rooms per
floor), and their corresponding 3DSGs [161].

Augmenting 3DSGs with plannable attributes. A prerequisite for planning over
3DSGs—absent in existing work [163, 161, 162]—is a database of plannable attributes:
predicates, actions, and transition models. To support task planning, we augment each
3DSG in Gibson [214] (tiny and medium splits) with several layers of additional unary
and binary predicates. For each 3DSG node, we obtain class labels, object dimensions and
pose from [161]. We annotate object affordances by building a knowledge base of lifted
object-action pairs and recursively applying it to every 3DSG node, while accounting for
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exceptions (objects that are concealed or contained within others). We also detect door
objects in the 3DSG and use this to add additional edges describing room connectivity. We
annotate objects with all possible properties in our planning domains (e.g., “is this object
typically a receptacle?”). Our rich property set (plannable attributes) is chosen to support a
wide range of realistic-robotic tasks geared towards large (building-scale) 3DSGs.

Fig. 6.2. The Taskography benchmark comprises large-scale planning problems defined
over buildings from the Gibson dataset [214]. (Left) Representative buildings from Gib-
son [214]. (Middle/Right) We feature a variety of problem classes ranging in scale and
complexity as illustrated by the domain statistics.

Benchmark statistics. Each of the 20 Taskography domains specifies a class of
planning problems that resemble real-world use cases (and theoretically complex extensions)
that a robot would encounter in office, house, or building scale environments. These domains
range from grounded planning domains to lifted planning domains, domains with no extraneous
objects to domains where most objects are extraneous, and domains for which polynomial
time solutions exist to NP-hard problems. The simplest domains in the benchmark have 1000
state variables and an average branching factor of 5; for hard domains, these are 4000 and 60
respectively (see Fig. 6.2).

Taskography-API. Our project page (https://taskography.github.io) will host code
and data used in this work. In Taskography-API, an open-source python package, we
provide access to 18 classical and learning-based symbolic planners, templates to implement
novel domains, and methods to generate problem instances of varying complexities and
train/evaluate learning-based planners.

Planners considered. Taskography supports a comprehensive set of planners to
facilitate standardized evaluation on novel domains. The following planners are available at
the time of writing.

• Optimal planners: Fast Downward (FD) with the opt-lmcut heuristic [26], Sat-
Plan [29], Delfi [30], DecStar-optimal [169], and Monte Carlo tree search.
• Satisficing planners: Fast Forward (FF), FF with axioms (FF-X) [25], Fast Down-
ward (FD) with the lama-cut heuristic [26], DecStar-satisficing [169], Cerberus [168],
Best First Width Search (BFWS) [215], and regression planning.

88

https://taskography.github.io


• Learning-based planners: Relational policy learning [183], Planning with learned
object importance (PLOI) [36] (and variants – see Sec. 6.6).

General assumptions. To facilitate evaluation of all of these classes of planners, the
first edition of our benchmark only considers fully observable tasks and discrete state and
action spaces. All goal states are specified as conjunctions of literals. While we make no
distinction between deterministic or stochastic transitions, all current experiments assume a
closed world, i.e., all possible lifted actions and effects are known apriori.

6.4.1. Robot planning domains: Case studies

The full Taskography benchmark comprises 20 domains. We discuss the four task
categories from which all domains are constructed that we believe to be interesting to a broad
robotics audience.
Domain 1. Rearrangement(k): Based on the recently proposed rearrangement challenge [216],
this task requires a robot randomly spawned to rearrange a set of k objects of interest into k
corresponding receptacles. The robot often needs to execute multiple other actions along the
way, such as opening/closing doors, navigating to goals, planning the sequence of objects to
visit, etc.
Domain 2. Courier (n, k): A robot that couriers objects is equipped with a knapsack of
maximum payload capacity of n units. The robot needs to locate and courier k objects (of
varying weights w ∈ {1, 2, 3} units) to k distinct delivery points. The knapsack can be used
to stow and retrieve items in random-access fashion; effectively embedding a combinatorial
optimization problem into the task. Stow and retrieve actions increase branching, necessitating
far deeper searches.

We also provide lifted variants of these tasks. Here, goals are specified over desired
object-receptacle class relations (e.g., “put a cup on a table”) as opposed to over object
instances (e.g., “put this cup on the table”). These tasks introduce ambiguity in both the
search of classical task-planners and learning-based techniques, which must now distinguish
object instances of relevant classes.
Domain 3. Lifted Rearrangement (k): A lifted version of the rearrangement domain where
the goals are specified at an object category level, as opposed to an instance level.
Domain 4. Lifted Courier (n, k): A lifted version of the courier domain where the goals are
specified at an object category level, as opposed to an instance level.

To promote compatability with a range of planning systems [171, 217], we represent
all tasks in PDDL format [218, 46]. We also include mechanisms for translating tasks
into alternative problem definition languages that are essential for some of our supported
planners [29].
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Table 6.1. Taskography benchmark results on select grounded and lifted Rearrangement
(Rearr) and Courier (Cour) 3DSG domains. Planning times are reported in seconds and do
not incorporate planner-specific domain translation times (factored into planning timeouts).
A ‘-’ indicates planning timeouts or failures (10 minutes for optimal planners, 30 seconds for
all others). Results are aggregated over 10 random seeds. Optimal task planning is infeasible
in larger problem instances or for more complex domains, while most satisficing planners
are unable to achieve real-time performance. PLOI [36], a recent learning-based planner
consistently performs the best across all domains.

Rearr(1) Tiny Rearr(2) Tiny Rearr(10) Medium Cour(7, 10) Medium Lifted Rearr(5) Tiny Lifted Cour(5, 5) Tiny
Planner Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail

op
tim

al

FD-seq-opt-lmcut 15.77 24.81 0.04 25.80 104.47 0.55 - - 1.00 - - 1.00 - - 1.00 - - 1.00
SatPlan 14.77 10.35 0.45 26.67 3.27 0.67 - - 1.00 - - 1.00 - - 1.00 - - 1.00
Delfi 15.13 0.36 0.16 29.10 27.77 0.29 - - 1.00 - - 1.00 - - 1.00 - - 1.00
DecStar-opt-fb - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00
MCTS - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00

sa
tis

fic
in
g

FF 16.71 0.19 0.00 34.44 0.55 0.00 159.04 5.30 0.09 128.41 6.62 0.24 62.86 3.40 0.47 57.74 4.03 0.44
FF-X 16.71 0.25 0.00 34.44 0.58 0.00 159.80 5.02 0.08 128.19 6.72 0.24 67.88 3.48 0.89 61.19 7.56 0.77
FD-lama-first 15.19 2.96 0.33 38.47 3.25 0.18 208.28 6.35 0.49 156.34 4.92 0.29 66.81 3.20 0.49 61.13 3.34 0.56
Cerberus-sat 11.50 12.00 0.85 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00
Cerberus-agl 14.77 5.13 0.45 33.00 7.30 0.49 176.60 8.91 0.72 125.73 12.99 0.83 60.50 7.62 0.60 59.19 7.05 0.77
DecStar-agl-fb 14.72 2.62 0.55 34.96 2.58 0.58 211.16 7.20 0.82 132.60 4.50 0.58 66.30 3.02 0.71 58.75 4.46 0.71
BFWS 15.56 0.90 0.22 32.16 0.37 0.18 151.17 0.41 0.23 152.71 1.13 0.21 56.90 0.94 0.41 61.92 2.30 0.43
Regression-plan - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00

PLOI [36] 16.45 0.00∗ 0.00 37.04 0.00∗ 0.00 213.43 0.17 0.00 161.90 0.34 0.00 78.68 0.22 0.24 71.71 0.26 0.26

6.4.2. Benchmarking classical and learned planners on Taskography

We present the empirical results on the Taskography benchmark across several classes
of task-planners in Table. 6.1. (Please consult supplementary material for a number of
additional results).

Evaluation protocol. We treat the evaluation of optimal planners separately to the
remaining methods. Optimal planners are not intended to be fast unlike satisficing and
learning-based variants. Rather, they compute a solution of minimum length (not necessarily
unique) to a given problem. Optimal planners are hence allotted 10 minutes to solve each
problem, while satisficing and learning-based planners are allotted 30 seconds. For learning-
based methods, we evaluate results over 10 random seeds for statistical significance. We
report standard deviations in the supplementary material. All domains comprise 40 training
problems. The domains tagged Tiny and Medium comprise 55 and 182 test problems
respectively, unless otherwise specified.

Optimal planners work only on the simplest of domains. Despite the reasonable
performance of optimal planners on the Rearrangment(1) domain, they are unable to efficiently
scale with increasing task complexity and fail to solve a single task on the Rearrangment
(k) and Courier (n, k) domains for k > 2. In particular, the Rearrangement(1) domain is
a superset of the grounded hierarchical path planning (HPP) task as described by [160].
Because the HPP task does not consider state changes to the scene graph (i.e., directly
equating the 3DSG to the planning graph for search), efficient shortest path planning is
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Table 6.2. Interestingly, task complexity does not correlate strongly with scene complexity.
It is instead determined by the number of operators, and avg. branch factor.

Rearr(10) Tiny Rearr(10) Medium
Planner Len. Time Fail Len. Time Fail
FF 162.61 7.04 0.07 159.04 5.30 0.09
FD (satisficing) 205.89 7.68 0.51 208.28 6.35 0.49
DecStar-agl-fb 193.00 6.78 0.85 211.16 7.20 0.82
BFWS 160.93 0.57 0.18 151.17 0.41 0.23

tractable. However, increasingly complex robot tasks requires more than the mere ability to
path plan in 3DSGs.

Planning performance degrades with domain complexity, not scene complex-
ity. We observe an increase in the number of planning failures and timeouts as satisficing
planners are applied to larger Rearrangement(k) domains (Table 6.2). Interestingly, larger
scenes do not appear to directly correlate with task complexity, as the performance metrics
remain largely consistent between the tiny and medium splits of the same domain (Table. 6.2).

Satisficing planners fail in domains requiring long-horizon reasoning. In the
Courier(n, k) domains, satisficing planners tend to produce shorter length solutions by
leveraging the knapsack’s capacity to stow objects on the way to various delivery points.
However, the planners often display shortsighted behaviours by stowing objects early in the
search, depleting knapsack slots that could potentially help further along the task. This
yields dead-end configurations and excessive backtracking, and thus, an increase in timeouts
is observed.

Planners that do not exploit forward heuristics fail due to large branching
factors. Due to the large branching factor of our domains, common strategies such as
Monte-Carlo Tree Search (MCTS) and MC Regression Planning are unable to solve any
task within a reasonable time constraint. For instance, a Rearrangement(10) task has an
average branching factor of 6.5 for MCTS. Since a reward is only obtained at the end (typical
planners take 200 steps to get there), MCTS degenerates to a slow breadth-first search.

Learning based planners that prune the state space excel on all domains.
We also evaluate two prevalent learning-to-plan methods based on generalized relational
planning [183] and planning with learned abstractions [36]. While the relational policy
stuggles to generalize in our domains (long-horizon, sparse rewards), PLOI demonstrates an
impressive ability to detect and prune contextually irrelvant parts of the 3DSGs. However,
it also requires a significant number of replanning steps (see figure to the right) as it often
retains objects within a graph without ensuring that all properties and ancestors required to
access the object are also preserved.
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Fig. 6.3. Learning-based planners like PLOI outperform all other planners on the benchmark,
but still incur significant overhead (number of replanning steps).

Discussion. Our evaluation of existing performant planners on the Taskography
benchmark consistently reveals two important trends across all domains.

• Pruning a 3DSG is essential for real-time performance, more so on challenging
domains.
• While learning-based planners excel across all domains, they require a large number
of replanning steps.

These imply that efficient utilization of 3DSGs in real-time robotic task planning requires both
adapting 3DSGs to better suit existing planners, and enabling performant (learning-based)
planners to better exploit 3DSG hierarchies. The remainder of our work addresses these
issues.

6.5. SCRUB: Principled sparsification of 3DSGs for ef-
ficient planning

As discussed above, learning-based planners leverage a wealth of prior knowledge acquired
during a training phase to significantly prune extraneous scene graph entities. We argue that,
if equipped with the right sparsification machinery, classical planners can compete with, or
outperform learning methods. We develop scrub, a principled 3DSG sparsification scheme
that prunes a 3DSG G (w.r.t. planning problem ΠG = 〈O,P ,A, T , C, I,G〉) by removing
vertices and edges extraneous to the task, resulting in a sparsified 3DSG Ĝ (and planning
problem Π̂Ĝ = 〈Ô, P̂ , Â, T̂ , Ĉ, Î,G〉)
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Algorithm 1 SCRUB algorithm
1: function SCRUB(3DSG G, Planning problem Π = 〈O,P ,A, T , C, I,G〉)
2: Ô = {} . Init. sufficient object set
3: g = Objects(G.literals) ∪ {robot} . Init. set of objects in the goal literal set
4: while not empty g do
5: Ô ← Ô ∪ g . Add to Ô all objects newly discovered in g
6: p ← all binary predicates relating a newly added object (i.e. o ∈ g − Ô) to its

ancestors in G
7: g ← Objects(p)
8: if all objects O visited then
9: Break
10: end if
11: end while
12: Ĝ← G . Initialize sparsified scenegraph
13: ConnectRooms . All-pairs shortest paths
14: Remove all nodes from Ĝ that are not in Ô
15: Prune literals that are no longer valid in the sparsified graph return Sparsified 3DSG

Ĝ
16: end function

Definition 1. A valid 3DSG sparsification of G for a planning problem ΠG to Ĝ (and
corresponding planning problem Π̂Ĝ) is a computable function scrub(ΠG) = Π̂Ĝ such that, a
plan p solves Πg iff it solves Π̂Ĝ.

A satisficing plan for ΠG may thus be obtained by simply solving the (much easier to
solve) sparsified problem Π̂Ĝ. Savings in planning time depend on the complexity of the
sparsified subgraph Ĝ. scrub presents a simple strategy which is guaranteed to be minimal
for grounded planning problems and satisficing for lifted planning problems.

For exposition, we consider grounded planning problems; see appendix for how scrub is
adapted to lifted planning problems or stochastic transitions. scrub begins with an initially
empty sufficient object set Ô. Satisfying the goal minimally requires all ground objects in
the goal to be included in the sufficient object set Ô (else goal objects are unreachable). In
addition, the robot itself must be part of the sufficient set. Let p be the set of all binary
predicates which include any of these objects. And let g be the set of all objects contained in
p. In general, this will be a superset of the objects we started with. We iteratively repeat
this process, each time adding the new objects in g to our sufficient set Ô.

The process terminates either when either the set g has no new objects (indicating
convergence), or until all the objects in the scene graph are visited at least once (indicating
the input graph already defines a minimal object set). We initialize the nodes of Ĝ with
objects in Ô, and copy over all edges (u, v) ∈ G for which both u, v ∈ Ô. scrub terminates
in time linear in the number of the predicates or nodes (whichever is larger).

93



Fig. 6.4. Best performing planners with and without scrub.

Fig. 6.5. scrub greatly prunes operators and states of planning problems.

Proposition 1. scrub is complete and results in a minimal scene subgraph for all grounded
planning problems over the scenegraph domain. (Please refer to supp. material for proof)

6.5.1. Impact of SCRUB on modern task planners

In this section, we investigate the effect that a 3DSG reduction scheme like scrub may
have on the performance of modern task planners. We experiment with the four domains
shown in Fig. 6.4 and evaluate the impact of scrub on planning performance and on domain
structure.

SCRUB enables classical planners to obtain performance at least as good as
state-of-the-art planners. In Fig. 6.4, we see that scrub drastically reduces planning
time for FF, FD-lama-first, and BFWS to a few milliseconds on Rearrangement(10), and
upper-bounds times at 5 seconds on Courier(10, 10). We see this enables BFWS, FD, and
FF to outperform PLOI (lower plan lengths for similar plan times). The grounded domains
each have 182 test problems, and the lifted domains each have 70 test problems.

SCRUB greatly reduces the number of operators and states. To asses the impact
of scrub, we compute statistics (number of operators, number of state variables) in Fig. 6.5.
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Table 6.3. Planner statistics evaluated over 70 test problems on Lifted Rearrangement(5).

Planner % Success Length Time
FD (satisficing) 51.43 66.81 3.20

FD (satisficing) + scrub 72.86 73.09 1.61
FD (optimal) - - -

FD (optimal) + scrub 72.86 68.33 2.26

We see that scrub prunes more than two-thirds of the operators and state variables for
grounded planning problems, and about a third in the case of lifted planning problems.

SCRUB enables optimal planners to run on lifted domains. Table 6.3 reports
results of running the satisficing and optimal variants of FD with and without scrub, on the
Lifted Rearrangement(5) domain. While FD (optimal) did not converge even with a timeout
of 24 hours, FD (optimal) + scrub solved about 72% of the tasks under a 30-second timeout,
taking 2 seconds per task on average.

6.6. SEEK: A procedure for efficient learning-based
planning

While scrub results in a 3DSG reduction that is guaranteed to find a satisficing plan—
if one exists—its conservative approach hurts performance in challenging lifted planning
problems as shown in Fig. 6.4. For such problems, learning-based graph-pruning strategies
like PLOI [36] outperform classical planners over scrubbed 3DSGs. However, as can be
seen in Sec. 6.4.2, even PLOI [36] incurs a significant number of replanning iterations.

We posit that several replanning iterations may be avoided by exploiting the 3DSG
hierarchy. Pruning strategies like PLOI first score all objects, and retain a minimal set by
thresholding. A simple threshold does little to ensure that all retained objects are reachable
from the root of the scene graph. To alleviate this issue, we propose seek: a procedure that
ensures we obtain a connected graph, with the objective of reducing the number of replanning
steps needed.

seek requires as input the 3DSG, the planning problem Π, and an object scoring
mechanism fθ. This scoring mechanism is typically a graph neural network (akin to [36])
that, given the current state, scores each object with an importance value in [0, 1]. We first
run the scorer and only retain objects above a threshold score t. We follow an identical
approach to PLOI [36] and at each step geometrically decay the threshold by γ, such that
at iteration i, the threshold is ti = γti−1, with t0, γ ∈ [0, 1). For each retained object o, we
recursively traverse up the 3DSG, adding all ancestors of o to the sufficient object set. This
procedure ensures that all objects are reachable from their respective room nodes. While
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Table 6.4. SEEK significantly reduces the number of replanning steps required by state-of-
the-art learning-based planners. For each planner, we report average wall time (including
translation time).

Planner Rearrangement (2) - Medium Courier (10, 3) - Medium Lifted Rearrangement (5) - Medium Lifted Courier (5, 5) - Medium
%Succ. Len. %Used Time #Replan %Succ. Len. %Used Time #Replan %Succ. Len. %Used Time #Replan %Succ. Len. %Used Time #Replan

Random 0.87 39.81 0.99 9.51 836 0.62 180 0.10 12.11 204 0.63 68.98 0.99 10.93 235 0.67 67.89 0.98 10.81 233
Random + seek 0.86 39.82 0.98 8.55 543 0.60 183.49 0.99 12.33 162 0.59 69.22 0.97 9.52 155 0.63 65.48 0.97 10.97 167
Hierarchical 1 35.76 0.28 0.45 150 1 191.75 0.48 1.16 40 0.80 76.75 0.59 2.60 269 0.73 69.69 0.61 2.73 173
Hierarchical + seek 1 35.76 0.28 0.30 12 1 191.75 0.48 0.97 7 0.80 76.70 0.56 2.20 208 0.77 76.04 0.55 1.59 76
PLOI [36] 1 35.76 0.28 0.44 141 1 191.75 0.48 1.13 41 0.79 78.16 0.59 2.49 258 0.73 69.88 0.62 2.75 169
PLOI + seek 1 35.76 0.28 0.31 14 1 191.75 0.48 0.97 7 0.80 76.61 0.56 2.18 197 0.77 79.19 0.55 1.53 53

seek, unlike scrub, is not guaranteed to be satisficing, it results in far fewer replanning
steps without affecting computation time.

Fig. 6.6. seek reduces replanning steps by
an order of magnitude.

Fig. 6.7. scrub on grounded domains, seek
on lifted domains.

SEEK reduces replanning steps by
an order of magnitude. To assess the
impact of the seek procedure on planning
performance, we evaluate performance with
respect to other learning-based planners on
Taskography in Table 6.4. As a baseline,
we evaluate a random pruning strategy that
uniformly randomly retains or prunes every
object. Even for this naive strategy, seek
offers significant performance improvement.
We also evaluate PLOI [36] and our adapta-
tion dubbed hierarchical, which trains mul-
tiple graph neural networks, one for each
level of the 3DSG hierarchy. For each vari-
ant, seek offers a consistent performance
improvement by decreasing the number of
replanning steps required as seen in Fig. 6.6.
seek is thus a conceptually simple strategy
for use with learning-based planners.

SCRUB on grounded domains,
SEEK on lifted domains: In general, we note that scrub is more performant on grounded
domains (due to minimality properties) and seek is more performant on lifted domains
(where scrub typically retains all instances of important object categories, but seek is more
effective due to its opportunistic retention of instances (Fig. 6.7)).

6.7. Concluding remarks
Limitations. Taskography currently supports only a fraction of the diverse types

of planning problems possible on 3DSGs. Geared towards identifying the most promising
avenues in learning-based planning, the first release of this benchmark focuses exclusively on
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offline task planning in fully observable and deterministic domains. Furthermore, low-level
motion planning is excluded from our benchmark. Robots operating in the real world will
need to reason under partial observability, sensor noise, and resource constraints.

Outlook. Taskography, in conjunction with scrub and seek aid the robot learning
community by (a) providing guidelines and implementations for practitioners choosing a
task planner, (b) serving as a benchmark for upcoming learning-based planners, and (c)
guiding the design of futuristic spatial representations for robotic task planning. We believe
Taskography is a first step towards addressing several of the grand challenges along the
road to developing general planning capabilities for autonomous intelligent robots.
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Chapter 8

Article 3: gradSim: Differentiable simulation
for system identification and visuomotor

control

Fig. 8.1. ∇Sim is a unified differentiable rendering and multiphysics framework that allows
solving a range of control and parameter estimation tasks (rigid bodies, deformable solids,
and cloth) directly from images/video.

Abstract
We consider the problem of estimating an object’s physical properties such as mass,

friction, and elasticity directly from video sequences. Such a system identification problem
is fundamentally ill-posed due to the loss of information during image formation. Current
solutions require precise 3D labels which are labor-intensive to gather, and infeasible to
create for many systems such as deformable solids or cloth. We present ∇Sim, a framework
that overcomes the dependence on 3D supervision by leveraging differentiable multiphysics
simulation and differentiable rendering to jointly model the evolution of scene dynamics and
image formation. This novel combination enables backpropagation from pixels in a video
sequence through to the underlying physical attributes that generated them. Moreover, our
unified computation graph – spanning from the dynamics and through the rendering process –
enables learning in challenging visuomotor control tasks, without relying on state-based (3D)



supervision, while obtaining performance competitive to or better than techniques that rely
on precise 3D labels.

8.1. Introduction
Accurately predicting the dynamics and physical characteristics of objects from image

sequences is a long-standing challenge in computer vision. This end-to-end reasoning task
requires a fundamental understanding of both the underlying scene dynamics and the imaging
process. Imagine watching a short video of a basketball bouncing off the ground and ask:
“Can we infer the mass and elasticity of the ball, predict its trajectory, and make informed
decisions, e.g., how to pass and shoot?” These seemingly simple questions are extremely
challenging to answer even for modern computer vision models. The underlying physical
attributes of objects and the system dynamics need to be modeled and estimated, all while
accounting for the loss of information during 3D to 2D image formation.

Depending on the assumptions on the scene structre and dynamics, three types of solutions
exist: black, grey, or white box. Black box methods [219, 220, 221, 222] model the state of
a dynamical system (such as the basketball’s trajectory in time) as a learned embedding of
its states or observations. These methods require few prior assumptions about the system
itself, but lack interpretability due to entangled variational factors [223] or due to the
ambiguities in unsupervised learning [224, 225]. Recently, grey box methods [226] leveraged
partial knowledge about the system dynamics to improve performance. In contrast, white
box methods [227, 228, 64, 229] impose prior knowledge by employing explicit dynamics
models, reducing the space of learnable parameters and improving system interpretability.

Most notably in our context, all of these approaches require precise 3D labels – which are
labor-intensive to gather, and infeasible to generate for many systems such as deformable
solids or cloth.

We eliminate the dependence of white box dynamics methods on 3D super-
vision by coupling explicit (and differentiable) models of scene dynamics with
image formation (rendering)1.

Explicitly modeling the end-to-end dynamics and image formation underlying video
observations is challenging, even with access to the full system state. This problem has
been treated in the vision, graphics, and physics communities [230, 231], leading to the
development of robust forward simulation models and algorithms. These simulators are not
readily usable for solving inverse problems, due in part to their non-differentiability. As such,
applications of black-box forward processes often require surrogate gradient estimators such
as finite differences or REINFORCE [232] to enable any learning. Likelihood-free inference
1Dynamics refers to the laws governing the motion and deformation of objects over time. Rendering refers to
the interaction of these scene elements – including their material properties – with scene lighting to form
image sequences as observed by a virtual camera. Simulation refers to a unified treatment of these two
processes.
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Fig. 8.2. ∇Sim: Given video observations of an evolving physical system (e), we randomly
initialize scene object properties (a) and evolve them over time using a differentiable physics
engine (b), which generates states. Our renderer (c) processes states, object vertices and global
rendering parameters to produce image frames for computing our loss. We backprop through
this computation graph to estimate physical attributes and controls. Existing methods rely
solely on differentiable physics engines and require supervision in state-space (f), while ∇Sim
only needs image-space supervision (g).

for black-box forward simulators [233, 234, 235, 236, 237, 238, 239] has led to some
improvements here, but remains limited in terms of data efficiency and scalability to high
dimensional parameter spaces. Recent progress in differentiable simulation further improves
the learning dynamics, however we still lack a method for end-to-end differentiation through
the entire simulation process (i.e., from video pixels to physical attributes), a prerequisite for
effective learning from video frames alone.

We present ∇Sim, a versatile end-to-end differentiable simulator that adopts a holistic,
unified view of differentiable dynamics and image formation(cf. Fig. 8.1,8.2). Existing
differentiable physics engines only model time-varying dynamics and require supervision in
state space (usually 3D tracking). We additionally model a differentiable image formation
process, thus only requiring target information specified in image space. This enables us to
backpropagate [240] training signals from video pixels all the way to the underlying physical
and dynamical attributes of a scene.

Our main contributions are:
• ∇Sim, a differentiable simulator that demonstrates the ability to backprop from video
pixels to the underlying physical attributes (cf. Fig. 8.2).
• We demonstrate recovering many physical properties exclusively from video observa-
tions, including friction, elasticity, deformable material parameters, and visuomotor
controls (sans 3D supervision)
• A PyTorch framework facilitating interoperability with existing machine learning
modules.

We evaluate ∇Sim’s effectiveness on parameter identification tasks for rigid, deformable
and thin-shell bodies, and demonstrate performance that is competitive, or in some cases
superior, to current physics-only differentiable simulators. Additionally, we demonstrate the
effectiveness of the gradients provided by ∇Sim on challenging visuomotor control tasks
involving deformable solids and cloth.
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8.2. ∇Sim: A unified differentiable simulation engine
Typically, physics estimation and rendering have been treated as disjoint, mutually

exclusive tasks. In this work, we take on a unified view of simulation in general, to compose
physics estimation and rendering. Formally, simulation is a function Sim : RP × [0, 1] 7→
RH × RW ; Sim(p, t) = I. Here p ∈ RP is a vector representing the simulation state and
parameters (objects, their physical properties, their geometries, etc.), t denotes the time of
simulation (conveniently reparameterized to be in the interval [0, 1]). Given initial conditions
p0, the simulation function produces an image I of height H and width W at each timestep
t. If this function Sim were differentiable, then the gradient of Sim(p, t) with respect to
the simulation parameters p provides the change in the output of the simulation from I to
I +∇Sim(p, t)δp due to an infinitesimal perturbation of p by δp . This construct enables
a gradient-based optimizer to estimate physical parameters from video , by defining a loss
function over the image space L(I, .), and descending this loss landscape along a direction
parallel to −∇Sim(.) . To realise this, we turn to the paradigms of computational graphs and
differentiable programming.
∇Sim comprises two main components: a differentiable physics engine that computes the

physical states of the scene at each time instant, and a differentiable renderer that renders
the scene to a 2D image. Contrary to existing differentiable physics [241, 242, 243, 244,
227, 245, 246, 64, 229] or differentiable rendering [109, 110, 111, 112] approaches, we
adopt a holistic view and construct a computational graph spanning them both.

8.2.1. Differentiable physics engine

Under Lagrangian mechanics, the state of a physical system can be described in terms
of generalized coordinates q, generalized velocities q̇ = u, and design/model parameters θ.
For the purpose of exposition, we make no distinction between rigid bodies, or deformable
solids, or thin-shell models of cloth, etc. Although the specific choices of coordinates and
parameters vary, the simulation procedure is virtually unchanged. We denote the combined
state vector by s(t) = [q(t),u(t)].

The dynamic evolution of the system is governed by second order differential equations
(ODEs) of the form M(s, θ )ṡ = f(s, θ), where M is a mass matrix that depends on the
state and parameters. The forces on the system may be parameterized by design parameters
(e.g. Young’s modulus). Solutions to these ODEs may be obtained through black box
numerical integration methods, and their derivatives calculated through the continuous
adjoint method [247]. However, we instead consider our physics engine as a differentiable
operation that provides an implicit relationship between a state vector s− = s(t) at the start
of a time step, and the updated state at the end of the time step s+ = s(t+ ∆t). An arbitrary
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discrete time integration scheme can be then be abstracted as the function g(s−, s+, θ) = 0 ,
relating the initial and final system state and the model parameters θ .

Gradients through this dynamical system can be computed by graph-based autodiff
frameworks [105, 106, 107], or by program transformation approaches [64, 248]. Our
framework is agnostic to the specifics of the differentiable physics engine, however in Appen-
dices B.1 through B.4 we detail an efficient approach based on the source-code transformation
of parallel kernels, similar to DiffTaichi [64]. In addition, we describe extensions to this frame-
work to support mesh-based tetrahedral finite-element models (FEMs) for deformable and
thin-shell solids. This is important since we require surface meshes to perform differentiable
rasterization as described in the following section.

8.2.2. Differentiable rendering engine

A renderer expects scene description inputs and generates color image outputs, all accord-
ing to a sequence of image formation stages defined by the forward graphics pipeline. The
scene description includes a complete geometric descriptor of scene elements, their associated
material/reflectance properties, light source definitions, and virtual camera parameters. The
rendering process is not generally differentiable, as visibility and occlusion events introduce
discontinuities. Most interactive renderers, such as those used in real-time applications,
employ a rasterization process to project 3D geometric primitives onto 2D pixel coordinates,
resolving these visibility events with non-differentiable operations.

Our experiments employ two differentiable alternatives to traditional rasterization, SoftRas
[111] and DIB-R [112], both of which replace discontinuous triangle mesh edges with smooth
sigmoids. This has the effect of blurring triangle edges into semi-transparent boundaries,
thereby removing the non-differentiable discontinuity of traditional rasterization. DIB-R
distinguishes between foreground pixels (associated to the principal object being rendered in
the scene) and background pixels (for all other objects, if any). The latter are rendered using
the same technique as SoftRas while the former are rendered by bilinearly sampling a texture
using differentiable UV coordinates.
∇Sim performs differentiable physics simulation and rendering at independent and ad-

justable rates, allowing us to trade computation for accuracy by rendering fewer frames than
dynamics updates.

8.3. Experiments
We conducted multiple experiments to test the efficacy of ∇Sim on physical parameter

identification from video and visuomotor control, to address the following questions:
• Can we accurately identify physical parameters by backpropagating from video pixels,
through the simulator? (Ans: Yes, very accurately, cf. Sec. 8.3.1)
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Fig. 8.3. Parameter Estimation: For deformable experiments, we optimize the material
properties of a beam to match a video of a beam hanging under gravity. In the rigid
experiments, we estimate contact parameters (elasticity/friction) and object density to match
a video (GT). We visualize entire time sequences (t) with color-coded blends.

• What is the performance gap associated with using ∇Sim (2D supervision) vs. differ-
entiable physics-only engines (3D supervision)? (Ans: ∇Sim is competitive/superior,
cf. Tables 8.1, 8.2, 8.3)
• How do loss landscapes differ across differentiable simulators (∇Sim) and their non-
differentiable counterparts? (Ans: Loss landscapes for ∇Sim are smooth, cf. Sec.
8.3.1.3)
• Can we use∇Sim for visuomotor control tasks? (Ans: Yes, without any 3D supervision,
cf. Sec. 8.3.2)
• How sensitive is ∇Sim to modeling assumptions at system level? (Ans: Moderately,
cf. Table 8.4)

Each of our experiments comprises an environment E that applies a particular set of
physical forces and/or constraints, a (differentiable) loss function L that implicitly specifies
an objective, and an initial guess θ0 of the physical state of the simulation. The goal is to
recover optimal physics parameters θ∗ that minimize L, by backpropagating through the
simulator.

8.3.1. Physical parameter estimation from video

First, we assess the capabilities of ∇Sim to accurately identify a variety of physical
attributes such as mass, friction, and elasticity from image/video observations. To the best
of our knowledge, ∇Sim is the first study to jointly infer such fine-grained parameters from
video observations. We also implement a set of competitive baselines that use strictly more
information on the task.
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Approach Mean
abs. err.

(kg)

Abs.
Rel.
err.

Average 0.2022 0.1031
Random 0.2653 0.1344
ConvLSTM [220] 0.1347 0.0094
PyBullet + REINFORCE [249] 0.0928 0.3668
DiffPhysics (3D sup.) 1.35e-9 5.17e-9
∇Sim 2.36e-5 9.01e-5
Table 8.1. Mass estimation: ∇Sim obtains
precise mass estimates, comparing favourably
even with approaches that require 3D supervi-
sion (diffphysics). We report the mean abolute
error and absolute relative errors for all ap-
proaches evaluated.

8.3.1.1. Rigid bodies (rigid). Our first
environment–rigid–evaluates the accuracy
of estimating of physical and material at-
tributes of rigid objects from videos. We
curate a dataset of 10000 simulated videos
generated from variations of 14 objects, com-
prising primitive shapes such as boxes, cones,
cylinders, as well as non-convex shapes from
ShapeNet [250] and DexNet [251]. With
uniformly sampled initial dimensions, poses,
velocities, and physical properties (density,
elasticity, and friction parameters), we apply
a known impulse to the object and record a
video of the resultant trajectory. Inference
with ∇Sim is done by guessing an initial
mass (uniformly random in the range [2, 12]kg/m3), unrolling a differentiable simulation using
this guess, comparing the rendered out video with the true video (pixelwise mean-squared
error - MSE), and performing gradient descent updates. We refer the interested reader to the
appendix (Sec. B.7) for more details.

mass elasticity friction
Approach m kd ke kf µ

Average 1.7713 3.7145 2.3410 4.1157 0.4463
Random 10.0007 4.18 2.5454 5.0241 0.5558
ConvLSTM [220] 0.029 0.14 0.14 0.17 0.096
DiffPhysics (3D sup.) 1.70e-8 0.036 0.0020 0.0007 0.0107
∇Sim 2.87e-4 0.4 0.0026 0.0017 0.0073

Table 8.2. Rigid-body parameter esti-
mation: ∇Sim estimates contact parameters
(elasticity, friction) to a high degree of
accuracy, despite estimating them from video.
Diffphys. requires accurate 3D ground-truth
at 30 FPS. We report absolute relative errors
for each approach evaluated.

Table 8.1 shows the results for predict-
ing the mass of an object from video, with
a known impulse applied to it. We use Effi-
cientNet (B0) [252] and resize input frames
to 64× 64. Feature maps at a resoluition of
4 × 4 × 32 are concatenated for all frames
and fed to an MLP with 4 linear layers, and
trained with an MSE loss. We compare∇Sim
with three other baselines: PyBullet + RE-
INFORCE [249, 253], diff. physics only
(requiring 3D supervision), and a ConvL-
STM baseline adopted from [220] but with a
stronger backbone. The DiffPhysics baseline
is a strict subset of ∇Sim, it only inolves the differentiable physics engine. However, it needs
precise 3D states as supervision, which is the primary factor for its superior performance.
Nevertheless, ∇Sim is able to very precisely estimate mass from video, to a absolute relative
error of 9.01e-5, nearly two orders of magnitude better than the ConvLSTM baseline. Two
other baselines are also used: the “Average” baseline always predicts the dataset mean and
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Deformable solid FEM Thin-shell (cloth)
Per-particle mass Material properties Per-particle velocity

m µ λ v
Approach Rel. MAE Rel. MAE Rel. MAE Rel. MAE
DiffPhysics (3D Sup.) 0.032 0.0025 0.0024 0.127
∇Sim 0.048 0.0054 0.0056 0.026

Table 8.3. Parameter estimation of deformable objects: We estimate per-particle
masses and material properties (for solid def. objects) and per-particle velocities for cloth. In
the case of cloth, there is a perceivable performance drop in diffphysics, as the center of mass
of a cloth is often outside the body, which results in ambiguity.

the “Random” baseline predicts a random parameter value from the test distribution. All
baselines and training details can be found in Sec. B.8 of the appendix.

To investigate whether analytical differentiability is required, our PyBullet + REIN-
FORCE baseline applies black-box gradient estimation [232] through a non-differentiable
simulator [254], similar to [249]. We find this baseline particularly sensitive to several
simulation parameters, and thus worse-performing. In Table 8.2, we jointly estimate friction
and elasticity parameters of our compliant contact model from video observations alone. The
trend is similar to Table 8.1, and ∇Sim is able to precisely recover the parameters of the
simulation. A few examples can be seen in Fig. 8.3.

8.3.1.2. Deformable Bodies (deformable). We conduct a series of experiments to investi-
gate the ability of ∇Sim to recover physical parameters of deformable solids and thin-shell
solids (cloth). Our physical model is parameterized by the per-particle mass, and Lamé
elasticity parameters, as described in in Appendix B.3.1. Fig. 8.3 illustrates the recovery of
the elasticity parameters of a beam hanging under gravity by matching the deformation given
by an input video sequence. We found our method is able to accurately recover the parameters
of 100 instances of deformable objects (cloth, balls, beams) as reported in Table 8.3 and
Fig. 8.3.

8.3.1.3. Smoothness of the loss landscape in ∇Sim. Since ∇Sim is a complex combination
of differentiable non-linear components, we analyze the loss landscape to verify the validity
of gradients through the system. Fig. 8.4 illustrates the loss landscape when optimizing for
the mass of a rigid body when all other physical properties are known.

We examine the image-space mean-squared error (MSE) of a unit-mass cube (1 kg) for a
range of initializations (0.1 kg to 5 kg). Notably, the loss landscape of ∇Sim is well-behaved
and conducive to momentum-based optimizers. Applying MSE to the first and last frames
of the predicted and true videos provides the best gradients. However, for a naive gradient
estimator applied to a non-differentiable simulator (PyBullet + REINFORCE), multiple local
minima exist resulting in a very narrow region of convergence. This explains ∇Sim’s superior
performance in Tables 8.1, 8.2, 8.3.
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Fig. 8.4. Loss landscapes when optimizing for physical attributes using ∇Sim. (Left)
When estimating the mass of a rigid-body with known shape using∇Sim, despite images being
formed by a highly nonlinear process (simulation), the loss landscape is remarkably smooth,
for a range of initialization errors. (Right) when optimizing for the elasicity parameters of a
deformable FEM solid. Both the Lamé parameters λ and µ are set to 1000, where the MSE
loss has a unique, dominant minimum. Note that, for fair comparison, the ground-truth for
our PyBullet+REINFORCE baseline was generated using the PyBullet engine.

8.3.2. Visuomotor control

Fig. 8.5. Visuomotor Control: ∇Sim
provides gradients suitable for diverse,
complex visuomotor control tasks. For
control-fem and control-walker exper-
iments, we train a neural network to ac-
tuate a soft body towards a target image
(GT). For control-cloth, we optimize
the cloth’s initial velocity to hit a target
(GT) (specified as an image), under non-
linear lift/drag forces.

To investigate whether the gradients com-
puted by ∇Sim are meaningful for vision-based
tasks, we conduct a range of visuomotor control
experiments involving the actuation of deformable
objects towards a visual target pose (a single im-
age). In all cases, we evaluate against diffphysics,
which uses a goal specification and a reward, both
defined over the 3D state-space.

8.3.2.1. Deformable solids. The first example
(control-walker) involves a 2D walker model.
Our goal is to train a neural network (NN) control
policy to actuate the walker to reach a target
pose on the right-hand side of an image. Our
NN consists of one fully connected layer and a
tanh activation. The network input is a set of 8
time-varying sinusoidal signals, and the output is
a scalar activation value per-tetrahedron. ∇Sim
is able to solve this environment within three iterations of gradient descent, by minimizing a
pixelwise MSE between the last frame of the rendered video and the goal image as shown in
Fig. 8.5 (lower left).
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Fig. 8.6. Results of various approaches on the control-fem environment (6 randomseeds;
each randomseed corresponds to a different goal configuration). While diffphysics performs
well, it assumes strong 3D supervision. In contrast, ∇Sim is able to solve the task by using
just a single image of the target configuration.

In our second test, we formulate a more challenging 3D control problem (control-fem)
where the goal is to actuate a soft-body FEM object (a gear) consisting of 1152 tetrahedral
elements to move to a target position as shown in Fig. 8.5 (center). We use the same NN
architecture as in the 2D walker example, and use the Adam [255] optimizer to minimize
a pixelwise MSE loss. We also train a privileged baseline (diffphysics) that uses strong
supervision and minimizes the MSE between the target position and the precise 3D location
of the center-of-mass (COM) of the FEM model at each time step (i.e. a dense reward). We
test both diffphysics and ∇Sim against a naive baseline that generates random activations
and plot convergence behaviors in Fig. 8.6.

While diffphysics appears to be a strong performer on this task, it is important to note
that it uses explicit 3D supervision at each timestep (i.e. 30 FPS). In contrast, ∇Sim uses a
single image as an implicit target, and yet manages to achieve the goal state, albeit taking a
longer number of iterations.

8.3.2.2. Cloth (control-cloth). We design an experiment to control a piece of cloth by
optimizing the initial velocity such that it reaches a pre-specified target. In each episode, a
random cloth is spawned, comprising between 64 and 2048 triangles, and a new start/goal
combination is chosen.

In this challenging setup, we notice that state-based MPC (diffphysics) is often unable
to accurately reach the target. We believe this is due to the underdetermined nature of the
problem, since, for objects such as cloth, the COM by itself does not uniquely determine
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the configuration of the object. Visuomotor control on the other hand, provides a more
well-defined problem. An illustration of the task is presented in Fig. 8.5 (column 3), and the
convergence of the methods shown in Fig. 8.7.

Fig. 8.7. Results on control-cloth environment (5 randomseeds; each controls the dimen-
sions and initial/target poses of the cloth). diffphysics converges to a suboptimal solution
due to ambiguity in specifying the pose of a cloth via its center-of-mass. ∇Sim solves the
environment using a single target image.

8.3.3. Impact of imperfect dynamics and rendering models

Being a white box method, the performance of ∇Sim relies on the choice of dynamics and
rendering models employed. An immediate question that arises is “how would the performance
of ∇Sim be impacted (if at all) by such modeling choices.” We conduct multiple experiments
targeted at investigating modelling errors and summarize them in Table 8.4 (left).

We choose a dataset comprising 90 objects equally representing rigid, deformable, and
cloth types. By not modeling specific dynamics and rendering phenomena, we create the
following 5 variants of our simulator.

(1) Unmodeled friction: We model all collisions as being frictionless.
(2) Unmodeled elasticity: We model all collisions as perfectly elastic.
(3) Rigid-as-deformable: All rigid objects in the dataset are modeled as deformable

objects.
(4) Deformable-as-rigid: All deformable objects in the dataset are modeled as rigid

objects.
(5) Photorealistic render : We employ a photorealistic renderer—as opposed to ∇Sim’s

differentiable rasterizers—in generating the target images.
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In all cases, we evaluate the accuracy with which the mass of the target object is estimated
from a target video sequence devoid of modeling discrepancies. In general, we observe
that imperfect dynamics models (i.e. unmodeled friction and elasticity, or modeling a rigid
object as deformable or vice-versa) have a more profound impact on parameter identification
compared to imperfect renderers.

8.3.3.1. Unmodeled dynamics phenomenon. From Table 8.4 (left), we observe a noticeable
performance drop when dynamics effects go unmodeled. Expectedly, the repurcussions of
incorrect object type modeling (Rigid-as-deformable, Deformable-as-rigid) are more severe
compared to unmodeled contact parameters (friction, elasticity). Modeling a deformable
body as a rigid body results in irrecoverable deformation parameters and has the most severe
impact on the recovered parameter set.

8.3.3.2. Unmodeled rendering phenomenon. We also independently investigate the impact
of unmodeled rendering effects (assuming perfect dynamics). We indepenently render ground-
truth images and object foreground masks from a photorealistic renderer [230]. We use these
photorealistic renderings for ground-truth and perform physical parameter estimation from
video. We notice that the performance obtained under this setting is superior compared to
ones with dynamics model imperfections.

Mean Rel. Abs. Err.
Unmodeled friction 0.1866
Unmodeled elasticity 0.2281
Rigid-as-deformable 0.3462
Deformable-as-rigid 0.4974
Photorealistic render 0.1793
Perfect model 0.1071

Tetrahedra (#) Forward (DP) Forward (DR) Backward (DP) Backward (DP + DR)
100 9057 Hz 3504 Hz 3721 Hz 3057 Hz
200 9057 Hz 3478 Hz 3780 Hz 2963 Hz
400 8751 Hz 3357 Hz 3750 Hz 1360 Hz
1000 4174 Hz 1690 Hz 1644 Hz 1041 Hz
2000 3967 Hz 1584 Hz 1655 Hz 698 Hz
5000 3871 Hz 1529 Hz 1553 Hz 424 Hz
10000 3721 Hz 1500 Hz 1429 Hz 248 Hz

Table 8.4. (Left) Impact of imperfect models: The accuracy of physical parameters
estimated by ∇Sim is impacted by the choice of dynamics and graphics (rendering) models.
We find that the system is more sensitive to the choice of dynamics models than to the
rendering engine used. (Right) Timing analysis: We report runtime in simulation steps /
second (Hz). ∇Sim is significantly faster than real-time, even for complex geometries.

8.3.3.3. Impact of shading and texture cues. Although our work does not attempt to
bridge the reality gap, we show early prototypes to assess phenomena such as shading/texture.
Fig. 8.8 shows the accuracy over time for mass estimation from video. We evaluate three
variants of the renderer - “Only color”, “Shading”, and “Texture”. The “Only color” variant
renders each mesh element in the same color regardless of the position and orientation of
the light source. The “Shading” variant implements a Phong shading model and can model
specular and diffuse reflections. The “Texture” variant also applies a non-uniform texture
sampled from ShapeNet [250]. We notice that shading and texture cues significantly improve
convergence speed. This is expected, as vertex colors often have very little appearance cues
inside the object boundaries, leading to poor correspondences between the rendered and
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Fig. 8.8. Including shading and texture cues lead to faster convergence. Inset plot has
a logarithmic Y-axis.

ground-truth images. Furthermore, textures seem to offer slight improvements in convergence
speed over shaded models, as highlighted by the inset (log scale) plot in Fig. 8.8.

8.3.3.4. Timing analysis. Table 8.4 (right) shows simulation rates for the forward and
backward passes of each module. We report forward and backward pass rates separately
for the differentiable physics (DP) and the differentiable rendering (DR) modules. The
time complexity of ∇Sim is a function of the number of tetrahedrons and/or triangles. We
illustrate the arguably more complex case of deformable object simulation for varying numbers
of tetrahedra (ranging from 100 to 10000). Even in the case of 10000 tetrahedra—enough to
contruct complex mesh models of multiple moving objects—∇Sim enables faster-than-real-
time simulation (1500 steps/second).

8.4. Related work
Differentiable physics simulators have seen significant attention and activity, with

efforts centered around embedding physics structure into autodifferentiation frameworks.
This has enabled differentiation through contact and friction models [241, 242, 243, 244,
227, 245, 246], latent state models [256, 257, 258, 259], volumetric soft bodies [260, 261,
228, 64], as well as particle dynamics [257, 262, 263, 64]. In contrast, ∇Sim addresses
a superset of simulation scenarios, by coupling the physics simulator with a differentiable
rendering pipeline. It also supports tetrahedral FEM-based hyperelasticity models to simulate
deformable solids and thin-shells.
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Recent work on physics-based deep learning injects structure in the latent space of the
dynamics using Lagrangian and Hamiltonian operators [224, 264, 265, 266, 225, 267], by
explicitly conserving physical quantities, or with ground truth supervision [268, 269, 220].

Sensor readings have been used to predicting the effects of forces applied to an object
in models of learned [270, 271] and intuitive physics [249, 272, 273, 274, 275, 276,
277, 278, 279, 280]. This also includes approaches that learn to model multi-object
interactions [219, 220, 221, 281, 222, 282]. In many cases, intuitive physics approaches are
limited in their prediction horizon and treatment of complex scenes, as they do not sufficiently
accurately model the 3D geometry nor the object properties. System identification based
on parameterized physics models [283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294] and inverse simulation [295] are closely related areas.

There is a rich literature on neural image synthesis, but we focus on methods that
model the 3D scene structure, including voxels [296, 297, 298, 299, 300], meshes [301,
302, 303, 304, 305], and implicit shapes [306, 307, 308, 309, 310, 311, 312]. Generative
models condition the rendering process on samples of the 3D geometry [313]. Latent
factors determining 3D structure have also been learned in generative models [223, 314].
Additionally, implicit neural representations that leverage differentiable rendering have been
proposed [315, 316] for realistic view synthesis. Many of these representations have become
easy to manipulate through software frameworks like Kaolin [317], Open3D [318], and
PyTorch3D [319].

Differentiable rendering allows for image gradients to be computed w.r.t. the scene
geometry, camera, and lighting inputs. Variants based on the rasterization paradigm
(NMR [110], OpenDR [109], SoftRas [111]) blur the edges of scene triangles prior to
image projection to remove discontinuities in the rendering signal. DIB-R [112] applies
this idea to background pixels and proposes an interpolation-based rasterizer for foreground
pixels. More sophisticated differentiable renderers can treat physics-based light transport
processes [113, 114] by ray tracing, and more readily support higher-order effects such as
shadows, secondary light bounces, and global illumination.

8.5. Conclusion
We presented ∇Sim, a versatile differentiable simulator that enables system identification

from videos by differentiating through physical processes governing dyanmics and image
formation. We demonstrated the benefits of such a holistic approach by estimating physical
attributes for time-evolving scenes with complex dynamics and deformations, all from raw
video observations. We also demonstrated the applicability of this efficient and accurate
estimation scheme on end-to-end visuomotor control tasks. The latter case highlights ∇Sim’s
efficient integration with PyTorch, facilitating interoperability with existing machine learning
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modules. Interesting avenues for future work include extending our differentiable simulation
to contact-rich motion, articulated bodies and higher-fidelity physically-based renderers –
doing so takes us closer to operating in the real-world.
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Chapter 9

Conclusion

All models are wrong, but some are useful

George Box
At the core of this dissertation lies the idea that “you need not learn what you already

know”. Gradient-based learners such as neural networks do not need to re-learn concepts of
projective geometry, optimization, search algorithms, or image formation, as a robust and
well-founded theory for these elements already exists.

We present simple, powerful, and effective approaches spanning all three subsystems of
the sense-plan-act computational model for embodied agents. Drawing upon work in diverse
fields (computer vision, graphics, robotics, and machine learning), the ideas presented in this
dissertation enable multiple challenging applications that have thus far remained out of reach
for deep learning methods.

• Differentiable programming for learned perception (SLAM) systems: Re-
alizing the visual SLAM pipeline as a differentiable function opens up new ways
of integrating deep learning with SLAM. Where prior approaches have attempted
to completely replace SLAM pipelines with deep neural networks, ∇SLAM enables
learning in only components of the SLAM system that warrant it, while retaining
useful inductive biases from classical robot vision – results of decades of research.
• Compact representations for symbolic planning: To enable robots to plan long-
horizon tasks in large-scale environments, we leverage the function approximation
capabilities of deep neural networks to prune a 3D scene graph to only retain scene
attributes that are relevant to a downstream task. Inductive biases imposed by 3D
scene graphs enable classical planners to perform on-par-with learning-based planners.
• Differentiable simulation for visuomotor control: By bringing in ideas from
the computer graphics and machine learning communities, we construct differentiable
programs that model complex phenomenon such as multiphysics and light transport.
Such differentiable world programs can solve extremely challenging tasks, such as
enabling visuomotor control from a single image goal specification.



Contemporary and follow-up work: We are beginning to see a number of other
researchers adding to the lines of work presented in this dissertation.

• Sodhi et al. [320] and Yi et al. [321] present alternate ways of differentiating through
factor graph optimization for state estimation applications. Karkus et al. [322]
demonstrate that differentiable SLAM systems learn representations more amenable
to downstream tasks and can be trained end-to-end for embodied navigation tasks.
• RISP [323] builds atop ∇Sim and proposes novel ideas, including the learning of
high-dimensional state representations that are invariant to rendering configurations.
This enables visuomotor control and system identification from real-world videos.

9.1. Discussion
We briefly reflect on the role of differentiable world programs in enabling the design of

intelligent embodied agents. The central question addressed in this dissertation is one that
has sparked lively debate among AI researchers for the past decade – “do classical techniques
matter in this day and age of deep learning”?

Today, most visual recognition pipelines are solely composed of deep neural networks.
Several commercial products and services already leverage deep learning for visual recognition,
speech processing, and natural language processing. However, all of these applications
mandate the availability of large, manually labelled training datasets. In the last two
years, multiple approaches (e.g., GPT-3 [324], CLIP [325]) have demonstrated that—given
abundant data and compute—model-free approaches with minimal inductive priors can match
and surpass human-level performance on such pattern recognition tasks.

However, embodied agents acting in an environment require far superior and complex
capabilities. Task-centric perception, symbolic and low-level planning, and sensorimotor
control all rely on complex reasoning and perceptual organization that is seemingly trivial for
humans, but impossible for existing AI systems. This is further exacerbated by the (relatively)
minute quantities of real-world data available for learning these intricate behaviors. It is
extremely difficult to collect large-scale real-world datasets for tasks involving embodied
intelligence, owing to the cost of physical interaction and the impossibility of emulating all
possible interaction scenarios – particularly ones that are safety-critical. Even if it were
possible to gather such data, there are no guarantees that models trained on such data
will generalize to other robots and/or sensorimotor configurations. Taking this hypothetical
scenario a step further, we will then be faced with the unduly challenging task of producing
accurate, task-specific labels for the multi-dimensional data thus obtained.

This suggests that for the forseeable future, intelligent agents will require data and
label-efficient training strategies. The most effective way to simplify a learning problem in
such a setting is therefore to impart our knowledge of the world when instantiating the model
(we refer to this as specified knowledge) and allow the model the flexibility to update this
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knowledge specification (we refer to this as acquired knowledge). This dissertation explores the
capabilities of differentiable programming in infusing such specified knowledge into modern,
learning-based approaches in a prescriptive manner. However, differentiable world programs
are not without their own set of shortcomings, which we briefly discuss below.

9.2. Known limitations and future directions
We identify the following four primary limitations of differentiable world programs that

remain to be addressed in future work.
• Capturing uncertainty: In most settings discussed in this dissertation, gradient-
based optimization relies crucially on an initial guess. The value of the initial guess
can severely impact the optimization process, leading to a high variance in the
resultant estimates. An extremely promising avenue for future work is to leverage
automated gradient-based probabilistic inference [326, 327, 328] to estimate posterior
distributions over parameter vectors, as opposed to point estimates that do not
capture uncertainty. The complementary strengths of differentiable and probabilstic
programming approaches are thus ripe for exploration.
• Incorporating non-differentiable components: There are several classes of com-
putations for which gradients may not exist or are degenerate (e.g., a discrete action
chosen by a symbolic planner is non-differentiable). Crucially, the existence of even a
small number of such computations may severely impact gradient flow through large
computation graphs. Designing gradient estimators for such operations, or reparame-
terizing them by leveraging neural networks as diffferentiable decision machines will
widen the set of applications differentiable programs are currently applied to.
• Robustness to model misspecifications: A major challenge in model-based learn-
ing paradigms occurs due to unmodelled attributes or effects. For example, it is
infeasible to model atmospheric effects such as turbulence and wear-and-tear within a
differentiable simulator, while ensuring gradient flow through all parameters of inter-
est. This suggests that a flexible blend of model-based and model-free approaches is
desirable. We are beginning to see flavours of this paradigm in recent work [226, 329],
but much remains to be done to tightly integrate these seemingly disparate and
complementary paradigms.
• Discovering symbols, properties, and inductive biases: To achieve true, indefi-
nite autonomy, embodied agents will need to adapt to their ever-changing environment;
discovering inductive biases from noisy, low-dimensional observations. Aspects to be
discovered include newer symbols (i.e., objects, world phenomena), their properties,
and possibly their governing equations and the uncertainty surrounding them. This is
a promising direction for longer-term research and relies crucially on efficient solutions
to the above three open problems.
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Final remarks

This work bridges the vision, robotics, graphics, and learning communities. Each com-
munity has advanced greatly in recent years both in terms of performance and feasibility:
robots have become affordable, learning methods have enabled huge strides in vision and
graphics; but by and large, these fields have evolved in isolation. Building autonomous and
truly intelligent agents will thus require insights from all these communities. This dissertation
fundamentally questions the way we think about building autonomous embodied agents, and
presents initial steps towards blending classical approaches with modern machine learning.
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Appendix A

Taskography: Supplementary material

This supplementary material discusses additional details and design choices for the Taskog-
raphy benchmark, including extended descriptions for all supported planning domains and
their constituents - object types, relations (i.e., properties, predicates), and goal specifications.
We provide results these additional domains, and discuss scrub and its favourable properties
in greater detail.

Please visit our project page for more details, including a video abstract.

A.1. Benchmark Details
The Taskography benchmark comprises 20 robot task planning domains over 3D scene

graphs (3DSGs). In the main paper, we detailed the Rearrangement(k), Courier(n,k), Lifted
Rearrangement(k), and Lifted Courier(n, k) task definitions following the recently proposed
Rearrangement challenge [216]. Table. A.1.1 lists the set of lifted objects in each planning
domain. In all problems, we have one instance of an agent, but several ground objects
corresponding to the other categories.

A.1.1. Taskography domain construction: Parsing Gibson 3DSGs

We parse the 3DSGs created over Gibson [161, 214] mapping scene entities to objects
and structural relations to predicates over objects. We retain key connectivity constraints
that govern traversable paths between locations in the same place, places in the same room,
and between rooms. Because room connectivity data not is provided in the original database,
we estimate it by computing a minimal spanning tree over rooms in the 3DSGs with edge
weights reflecting the Euclidean distance between room centroids. For larger scenes, we
impose a single connection between rooms in different floors (e.g., one set of stairs). Several
additional properties are used to express the state of agent and interactable objects, and to
associate each of them to a particular location in the 3DSG.

https://taskography.github.io
https://drive.google.com/file/d/1ZrCsIJD1lNVnQv6hckIdOLS6etrNk6In/view


Table A.1.1. Evaluated 3DSG planning domains in Taskography and object types
present in each. Domains are further partitioned into tiny and medium splits akin to the
3DSGs provided over Gibson [161, 214]. Scene entities are instantiated as a particular
object type according to their semantic class.

n k Agent Room Place Location Receptacle Item Bagslot Receptacle Class Item Class
Rearr(k) - {1, 2, 5, 10} 3 3 3 3 3 3 7 7 7
Cour(n, k) {3, 5, 7, 10} {5, 10} 3 3 3 3 3 3 3 7 7
Lifted Rearr(k) - {5} 3 3 3 3 3 3 7 3 3
Lifted Cour(n, k) {5} {5} 3 3 3 3 3 3 3 3 3

An assignment of values to all possible properties over objects defines a symbolic state in
the planning problem; hence, actions taken by the robot in Taskography alter the symbolic
state of the 3DSG. We observe a significant variation in the size of the state space between
different types of domains as a result of the varying subsets of object and predicate types
used to express their respective tasks (see Table. A.1.2). For instance, the Rearrangement(k)
task represents the lowest complexity domain on Taskography and is thereby defined by
the smallest subset of object types, predicates, and actions available to the robot. In contrast,
the Lifted Courier(n, k) extends the Rearrangement(k) task definition with bagslots enabling
stow and retrieve operators, as well as receptacle classes and item classes to express lifted
class relations in the 3DSG at particular state.

We leverage task samplers built into Taskography-API for generating large-scale and
diverse datasets of planning problems over 3DSGs. In a two step process the task samplers
automatically parse 3DSGs into plannable symbolic representations (i.e., embedding the
agent forms the initial state I) before composing goal literals over randomly sampled scene
entities. For grounded problems, goals are conjunctions of inReceptacle literals expressed
over randomly sampled item and receptacle target ground instances. For lifted problems,
goal are conjunctions of classRelation literals expressed over randomly sampled item and
receptacle target class relations.

Table A.1.2. Structural relations of 3DSGs and the state of the robot and interactable
objects (i.e., items and receptacles) are captured with an assignment of values to all possible
predicates over objects. The most challenging Lifted Courier(n, k) is the only domain to
incorporate all relations, while other domain types in Taskography require only a subset
of the properties and relations.

Object (:types) Agent Room Place Location Receptacle Item Bagslot Receptacle Class Item Class
Agent holdsAny inRoom inPlace atLoc - holdsItem - - -
Room inRoom connected placeInRoom + roomCenter - - - - - -
Place inPlace placeInRoom + roomCenter - locInPlace + placeCenter - - - - -
Location atLoc - locInPlace + placeCenter - recepAtLoc itemAtLoc - - -
Receptacle - - - recepAtLoc recepOpened inRecep - recepClass -
Item holdsItem - - itemAtLoc inRecep small + medium + large inSlot - itemClass
Bagslot - - - - - inSlot slotHoldsAny - -
Receptacle Class - - - - recepClass - - - classRelation
Item Class - - - - - itemClass - classRelation -
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A.1.2. Domain specifications

To provide further clarity on the four task categories (Rearrangement(k), Courier(n,k),
Lifted Rearrangement(k), and Lifted Courier(n, k)) from which our 3DSG planning domains
are constructed, we herein outline hypothetical problem instances involving but a fraction of
the objects, attributes, and relations available in Taskography. Let the environment consist
of v rooms connected by e undirected traversability constraints; e.g., connected(roomA,
roomB). The spatial hierarchy of 3DSGs [161, 162] is induced by the appropriate applica-
tion of structural relations (see Table. A.1.2) to a discrete set of places in each room, and
locations in each place; e.g., placeInRoom(placeD, roomC), locInPlace(locF, placeD). The
lowest level of the spatial hierarchy (locations) encodes all occupiable positions for the agent,
items, and receptacles in the scene; e.g., atLoc(agent, locationB), itemAtLoc(mugA, loca-
tionD), recepAtLoc(fridgeC, locationG). Such relations equate to logical predicates in [218]
and can be altered by the agent should the required preconditions of an action be met in the
current state; e.g., ¬holdsAny(agent) and ∧(atLoc(agent, locX), itemAtLoc(mugA, locX))
are preconditions for PickupItem(mugA, agent).

As mentioned in Sec. A.1.1, the goals in grounded planning problems are specified with
inReceptacle literals. Concretely, a Rearrangement(k) task for k = 1 requires the agent to
pick-and-place a ground item in a ground receptacle, where each object in the goal is uniquely
identified; e.g., G = inReceptacle(mugA, fridgeC). By extension, a Rearrangement(k) task
for k = 2 is solved iff the agent derives a state satisfying the conjunction of two inReceptacle
goal literals; e.g., G = ∧(inReceptacle(mugA, fridgeC), inReceptacle(plateD, shelfB)). The
Courier(n, k) domains attribute weights (w ∈ 1, 2, 3 units) to items based on their volume,
and equips the agent with a knapsack of fixed capacity n to stow and retrieve items as it
traverses the scene. While the knapsack in Courier(n, k) enables planners to exploit stowing
capacity to compute lower cost solutions (at the expense of task complexity) in comparison
to Rearrangement(k), goals are identically specified between the two task categories since
they are both considered grounded.

In stark constrast, lifted planning problems are specified with classRelation
literals expressed over item-receptacle class combinations. For instance, the fol-
lowing Lifted Rearrangement(k) or Lifted Courier(n, k) domain with k = 2,
G = ∧(classRelation(cup, cupboard), classRelation(plate, sink)), requires the agent to
place at least one cup in a cupboard and plate in a sink for the task to be complete. This
disambiguates the planner which is no longer able to exploit ground objects featured in the
goal as heuristic landmarks, and reduces the effectiveness of deterministic graph sparsification
techniques such as SCRUB. As in the grounded domain variants, the goal specifications for
both the Lifted Rearrangement(k) and Lifted Courier(n, k) are identical.

143



A.1.3. Symbolic environment interaction

The action space of the most complex domain in Taskography equips the agent with
16 operators where only a subset are feasible at any given state. Below, we describe but a
few of these operators which demonstrate motion through 3DSG hierachies and object-level
robot interaction.

• GoToRoom: The robot moves from the door of its current room to the door of the
target room if the rooms are connected.
• GoToPlace: The robot moves from the center of its current place to the center of
the target place if the places are in the same room.
• GoToLocation: The robot moves from the current location to the target location
if the locations are in the same place.
• OpenReceptacle: The robot opens a queried openable receptacle.
• CloseReceptacle: The robot closes a queried openable receptacle.
• PickupItem: The robot picks-up an item at a particular location with a free gripper;
three operator variations for picking from non existent, non-opening, and opening
receptacles.
• PlaceItem: The robot places an in-gripper item at a particular location; two operator
variations for placing in non-opening and opening receptacles.
• StowItem: The robot stows an in-gripper item in its knapsack: three operator
variations for small, medium, and large items consuming increasing numbers of
bagslots.
• RetrieveItem: The robot retrieves an item from its knapsack into its gripper; three
operator variations for small, medium, and large items freeing increasing number of
bagslots.

Should the preconditions for any of these actions not be satisfied, the action is deemed invalid.

A.2. SCRUB: Discussion and analysis
In the main paper, for sake of brevity, we only discussed the applicability of scrub to

grounded planning problems with deterministic transitions. However, by design, scrub may
be applied to any planning problem: lifted or grounded, with deterministic or stochastic
transitions.

In lifted planning problems, we modify scrub to trivially include all ground object tuples
that satisfy goal conditions into the initial sufficient object set. This in-turn ensures that all
of these ground objects are reachable from the start state, ensuring a satisficing plan exists.
However, this conservative strategy may resulting in retaining more objects than minimally
required – this is where seek can be applied to opportunistically retain important objects
instead.
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In a similar vein, for stochastic transitions, we modify scrub to include all binary
predicates resulting from all possible stochastic transitions from a given node.

We now prove that scrub results in a minimal scene subgraph for all grounded planning
problems.
Proposition 2. scrub is complete and results in a minimal scene subgraph for all grounded
planning problems over the scenegraph domain.

Proof. We prove the minimality of scrub by demonstrating that whenever we prune a
node from a scrubbed scenegraph, the resultant planning problem is unsolvable. Assume
that we prune a node n from a scrubbed 3DSG Ĝ. Recall the types of nodes we have in
the 3DSG: agent, room, place, receptacle, item, floor, building .

(1) If n is of type agent or building, the problem is unsolvable, by construction.
(2) If n is of type item, removing it would render the goal state unreachable — recall

that Ĝ only retains item nodes that feature in the goal state.
(3) If n is of type receptacle, it is retained in Ĝ either because (a) it is required to

access a goal object of type item, or (b) it is a goal receptacle (i.e., a target location
an item must be moved into). Removing n will thus render one of the objects in the
goal state unreachable.

(4) If n is of type place, room or floor, n ∈ Ĝ because n directly features in the goal
state, or because n is required to traverse from the start state to the goal state (e.g.,
rooms that connect the start and goal rooms, etc.).

Since pruning any of these nodes renders the problem unsolvable, the scrubbed graph Ĝ is
a minimal scene subgraph for the grounded planning problem considered. �

A.3. Additional results on Taskography domains
In this section, we provide results over several extended domains from the Taskography

benchmark. Please see Tables A.3.3, A.3.4, A.3.5, A.3.6, A.3.7, A.3.8.
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Table A.3.3. Performance of planners over the Rearrangement(k)-Tiny tasks. For all metrics,
lower values indicate better performance.

Rearr(1) Tiny Rearr(2) Tiny Rearr(10) Tiny
Planner Len. Time Fail Len. Time Fail Len. Time Fail

op
tim

al

FD-seq-opt-lmcut 15.77 24.81 0.04 25.80 104.47 0.55 - - 1.00
SatPlan 14.77 10.35 0.45 26.67 3.27 0.67 - - 1.00
Delfi 15.13 0.36 0.16 29.10 27.77 0.29 - - 1.00
DecStar-opt-fb - - 1.00 - - 1.00 - - 1.00
MCTS - - 1.00 - - 1.00 - - 1.00

sa
tis

fic
in
g

FF 16.71 0.19 0.00 34.44 0.55 0.00 162.61 7.04 0.07
FF-X 16.71 0.25 0.00 34.44 0.58 0.00 162.30 7.39 0.09
FD-lama-first 15.19 2.96 0.33 38.47 3.25 0.18 205.89 7.68 0.51
Cerberus-sat 11.50 12.00 0.85 - - 1.00 - - 1.00
Cerberus-agl 14.77 5.13 0.45 33.00 7.30 0.49 186.07 9.04 0.73
DecStar-agl-fb 14.72 2.62 0.55 34.96 2.58 0.58 193.00 6.78 0.85
BFWS 15.56 0.90 0.22 32.16 0.37 0.18 160.93 0.57 0.18
Regression-plan - - 1.00 - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00 - - 1.00

PLOI [36] 16.45 0.00* 0.00 37.04 0.00* 0.00 221.71 0.18 0.00

Table A.3.4. Performance of planners over the Rearrangement(k)-Medium tasks. For all
metrics, lower values indicate better performance.

Rearr(1) Medium Rearr(2) Medium Rearr(10) Medium
Planner Len. Time Fail Len. Time Fail Len. Time Fail

op
tim

al

FD-seq-opt-lmcut 15.53 19.68 0.06 27.13 125.69 0.41 - - 1.00
SatPlan 14.98 11.98 0.33 28.23 5.45 0.50 - - 1.00
Delfi 15.40 3.62 0.16 29.13 12.79 0.28 - - 1.00
DecStar-opt-fb 15.42 41.35 0.93 28.50 111.53 0.91 - - 1.00
MCTS - - 1.00 - - 1.00 - - 1.00

sa
tis

fic
in
g

FF 16.45 0.25 0.00 32.87 0.41 0.00 159.04 5.30 0.09
FF-X 16.45 0.21 0.00 32.87 0.45 0.00 159.80 5.02 0.08
FD-lama-first 15.51 2.48 0.21 39.20 2.77 0.20 208.28 6.35 0.49
Cerberus-sat 11.20 10.17 0.88 - - 1.00 - - 1.00
Cerberus-agl 15.18 6.10 0.34 32.20 6.40 0.33 176.60 8.91 0.72
DecStar-agl-fb 15.36 2.15 0.58 36.35 2.40 0.59 211.16 7.20 0.82
BFWS 15.42 0.60 0.23 30.65 0.44 0.27 151.17 0.41 0.23
Regression-plan - - 1.00 - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00 - - 1.00

PLOI [36] 16.44 0.00* 0.00 36.19 0.00* 0.00 213.43 0.17 0.00
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Table A.3.5. Performance of planners over the Courier(n, k)-Tiny tasks. For all metrics,
lower values indicate better performance.

Cour(3, 10) Tiny Cour(5, 10) Tiny Cour(7, 10) Tiny Cour(10, 10) Tiny
Planner Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail

sa
tis

fic
in
g

FF 146.35 7.57 0.13 136.38 7.97 0.33 127.88 6.84 0.55 124.93 14.62 0.73
FF-X 144.80 8.34 0.11 137.05 7.49 0.31 128.42 8.34 0.53 126.31 15.21 0.71
FD-lama-first 175.15 8.31 0.53 159.64 7.31 0.55 156.12 6.97 0.55 145.00 7.50 0.56
Cerberus-sat - - 1.00 - - 1.00 - - 1.00 - - 1.00
Cerberus-agl 137.87 10.79 0.73 127.30 17.61 0.82 138.25 21.65 0.93 - - 1.00
DecStar-agl-fb 140.47 4.52 0.69 124.62 4.65 0.71 120.20 4.04 0.73 117.73 6.98 0.73
BFWS 160.18 1.19 0.18 159.17 0.94 0.25 159.90 1.80 0.29 153.93 4.28 0.45
Regression-plan - - 1.00 - - 1.00 - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00 - - 1.00 - - 1.00

PLOI [36] 193.55 0.22 0.00 179.36 0.26 0.00 172.87 0.37 0.00 167.38 0.71 0.00

Table A.3.6. Performance of planners over the Courier(n, k)-Medium tasks. For all metrics,
lower values indicate better performance.

Cour(3, 10) Medium Cour(5, 10) Medium Cour(7, 10) Medium Cour(10, 10) Medium
Planner Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail

sa
tis

fic
in
g

FF 141.89 4.94 0.07 133.46 6.29 0.20 128.41 6.62 0.24 117.50 14.27 0.78
FF-X 141.89 4.47 0.07 133.50 5.80 0.19 128.19 6.72 0.24 118.67 15.52 0.77
FD-lama-first 180.38 7.11 0.40 166.35 6.27 0.45 156.34 4.92 0.29 141.75 6.80 0.63
Cerberus-sat - - 1.00 - - 1.00 - - 1.00 - - 1.00
Cerberus-agl 148.41 10.17 0.74 133.31 11.50 0.77 125.73 12.99 0.83 109.56 15.58 0.95
DecStar-agl-fb 154.07 6.45 0.66 142.42 4.01 0.61 132.60 4.50 0.58 128.58 7.60 0.70
BFWS 151.09 0.60 0.27 152.61 0.66 0.20 152.71 1.13 0.21 153.02 2.81 0.30
Regression-plan - - 1.00 - - 1.00 - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00 - - 1.00 - - 1.00

PLOI [36] 182.31 0.20 0.00 169.20 0.24 0.00 161.90 0.34 0.00 152.19 0.61 0.00

Table A.3.7. Performance of planners over the Lifted Rearrangement(k) domains. For all
metrics, lower values indicate better performance.

Lifted Rearr(5, 5) Tiny Lifted Rearr(5, 5) Medium
Planner Len. Time Fail Len. Time Fail

sa
tis

fic
in
g

FF 62.86 3.40 0.47 61.90 3.04 0.37
FF-X 67.88 3.48 0.89 61.78 2.30 0.72
FD-lama-first 66.81 3.20 0.49 71.15 4.11 0.46
Cerberus-sat - - 1.00 - - 1.00
Cerberus-agl 60.50 7.62 0.60 64.26 6.74 0.57
DecStar-agl-fb 66.30 3.02 0.71 77.00 3.08 0.71
BFWS 56.90 0.94 0.41 55.36 0.80 0.43
Regression-plan - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00

PLOI [36] 78.68 0.22 0.24 76.62 0.22 0.24
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Table A.3.8. Performance of planners over the Lifted Courier(n, k) domains. For all metrics,
lower values indicate better performance.

Lifted Cour(5, 5) Tiny Lifted Cour(5, 5) Medium
Planner Len. Time Fail Len. Time Fail

sa
tis

fic
in
g

FF 57.74 4.03 0.44 57.38 4.81 0.37
FF-X 61.19 7.56 0.77 60.05 3.79 0.64
FD-lama-first 61.13 3.34 0.56 63.19 3.31 0.45
Cerberus-sat - - 1.00 - - 1.00
Cerberus-agl 59.19 7.05 0.77 59.61 7.45 0.68
DecStar-agl-fb 58.75 4.46 0.71 63.93 3.85 0.68
BFWS 61.92 2.30 0.43 56.14 0.67 0.38
Regression-plan - - 1.00 - - 1.00

le
ar
n Relational policy [183] - - 1.00 - - 1.00

PLOI [36] 71.71 0.26 0.26 69.92 0.46 0.30

148



Appendix B

∇Sim: Supplementary material

B.1. Differentiable physics engine
Under Lagrangian mechanics, the state of a physical system can be described in terms

of generalized coordinates q, generalized velocities q̇ = u, and design, or model parameters
θ. For the purposes of exposition, we make no distinction between rigid-bodies, deformable
solids, or thin-shell models of cloth and other bodies. Although the specific choices of
coordinates and parameters vary, the simulation procedure is virtually unchanged. We denote
the combined state vector by s(t) = [q(t),u(t)].

The dynamic evolution of the system is governed by a second order differential equations
(ODE) of the form Ms̈ = f(s), where M is a mass matrix that may also depend on our state
and design parameters θ. Solutions to ODEs of this type may be obtained through black
box numerical integration methods, and their derivatives calculated through the continuous
adjoint method [247]. However, we instead consider our physics engine as a differentiable
operation that provides an implicit relationship between a state vector s− = s(t) at the start
of a time step, and the updated state at the end of the time step s+ = s(t+ ∆t). An arbitrary
discrete time integration scheme can be then be abstracted as the function g(s−, s+, θ) = 0,
relating the initial and final system state and the model parameters θ. By the implicit
function theorem, if we can specify a loss function l at the output of the simulator, we can
compute ∂l

∂s− as cT ∂g
∂s− , where c is the solution to the linear system ∂g

∂s+
Tc = − ∂l

∂s+
T , and

likewise for the model parameters θ.
While the partial derivatives ∂g

∂s− , ∂g
∂s+ , ∂g

∂θ
can be computed by graph-based automatic

differentation frameworks [105, 106, 107], program transformation approaches such as
DiffTaichi, and Google Tangent [64, 248] are particularly well-suited to simulation code. We
use an embedded subset of Python syntax, which computes the adjoint of each simulation
kernel at runtime, and generates C++/CUDA [330] code. Kernels are wrapped as custom
autograd operations on PyTorch tensors, which allows users to focus on the definition of
physical models, and leverage the PyTorch tape-based autodiff to track the overall program



flow. While this formulation is general enough to represent explicit, multi-step, or fully
implicit time-integration schemes, we employ semi-implicit Euler integration, which is the
preferred integration scheme for most simulators [331].

B.1.1. Physical models

We now discuss some of the physical models available in ∇Sim.
Deformable Solids: In contrast with existing simulators that use grid-based methods

for differentiable soft-body simulation [260, 64], we adopt a finite element (FEM) model
with constant strain tetrahedral elements common in computer graphics [332]. We use the
stable Neo-Hookean constitutive model of Smith et al. [333] that derives per-element forces
from the following strain energy density:

Ψ(q, θ) = µ

2 (IC − 3) + λ

2 (J − α)2 − µ

2 log(IC + 1), (B.1.1)

where IC , J are invariants of strain, θ = [µ, λ] are the Lamé parameters, and α is a per-element
actuation value that allows the element to expand and contract.

Numerically integrating the energy density over each tetrahedral mesh element with
volume Ve gives the total elastic potential energy, U(q, θ) = ∑

VeΨe. The forces due to this
potential fe(s, θ) = −∇qU(q, θ), are computed analytically, and their gradients are obtained
using the adjoint method (cf. Section 8.2.1).

Deformable Thin-Shells: To model thin-shells such as clothing, we use constant
strain triangular elements embedded in 3D. The Neo-Hookean constitutive model above
is applied to model in-plane elastic deformation, with the addition of a bending energy
fb(s, θ) = kbsin(φ2 + α)d, where kb is the bending stiffness, φ is the dihedral angle between
two triangular faces, α is a per-edge actuation value that allows the mesh to flex inwards or
outwards, and d is the force direction given by [334]. We also include a lift/drag model that
approximates the effect of the surrounding air on the surface of mesh.

Rigid Bodies: We represent the state of a 3D rigid body as qb = [x, r] consisting of a
position x ∈ R3, and a quaternion r ∈ R4. The generalized velocity of a body is ub = [v, ω]
and the dynamics of each body is given by the Newton-Euler equations,m 0

0 I

 v̇
ω̇

 =
f
τ

−
 0
ω × Iω

 (B.1.2)

where the mass m and inertia matrix I (expressed at the center of mass) are considered
design parameters θ.

Contact: We adopt a compliant contact model that associates elastic and damping
forces with each nodal contact point. The model is parameterized by four scalars θ =
[ke, kd, kf , µ], corresponding to elastic stiffness, damping, frictional stiffness, and friction
coefficient respectively. To prevent interpenetration we use a proportional penalty-based force,
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fn(s, θ) = −n[keC(q)+kdĊ(u)], where n is a contact normal, and C is a gap function measure
of overlap projected on to R+. We model friction using a relaxed Coulomb model [335]
ff(s, θ) = −D[min(µ|fn|, kfus)], where D is a basis of the contact plane, and us = DTu is
the sliding velocity at the contact point. While these forces are only C0 continuous, we found
that this was sufficient for optimization over a variety of objectives.

More physical simulations: We also implement a number of other differentiable
simulations such as pendula, mass-springs, and incompressible fluids [336]. We note these
systems have already been demonstrated in prior art, and thus focus on the more challenging
systems in our paper.

B.2. Discrete Adjoint Method
Above, we presented a formulation of time-integration using the discrete adjoint method

that represents an arbitrary time-stepping scheme through the implicit relation,

g(s−, s+, θ) = 0. (B.2.1)

This formulation is general enough to represent both explicit or implicit time-stepping
methods. While explicit methods are often simple to implement, they may require extremely
small time-steps for stability, which is problematic for reverse-mode automatic differentiation
frameworks that must explicitly store the input state for each discrete timestep invocation of
the integration routine. On the other hand, implicit methods can introduce computational
overhead or unwanted numerical dissipation [337]. For this reason, many real-time physics
engines employ a semi-implicit (symplectic) Euler integration scheme [331], due to its ease of
implementation and numerical stability in most meaningful scenarios (conserves energy for
systems where the Hamiltonian is time-invariant).

We now give a concrete example of the discrete adjoint method applied to semi-implicit
Euler. For the state variables defined above, the integration step may be written as follows,

g(s−, s+, θ) =
u+ − u− −∆tM−1f(s−)
q+ − q− −∆tu+

 = 0. (B.2.2)

Note that in general, the mass matrix M is a function of q and θ. For conciseness we only
consider the dependence on θ, although the overall procedure is unchanged in the general
case. We provide a brief sketch of computing the gradients of g(s−, s+, θ). In the case of
semi-implicit integration above, these are given by the following equations:

∂g
∂s−

=
−∆tM−1 ∂f

∂q(t) −I−∆tM−1 ∂f
∂u(t)

−I 0

 ∂g
∂s+ =

0 I
I −∆tI

 ∂g
∂θ

=
−∆t∂M−1

∂θ

0

 .
(B.2.3)
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In the case of semi-implicit Euler, the triangular structure of these Jacobians allows the
adjoint variables to be computed explicitly. For fully implicit methods such as backwards
Euler, the Jacobians may create a linear system that must be first solved to generate adjoint
variables.

B.3. Physical Models
We now undertake a more detailed discussion of the physical models implemented in

∇Sim.

(a) Triangular FEM element (b) Tetrahedral FEM element

Fig. B.3.1. Mesh Discretization: We use triangular (a) and tetrahedral (b) FEM models
with angle-based and volumetric activation parameters, α. These mesh-based discretizations
are a natural fit for our differentiable rasterization pipeline, which is designed to operate on
triangles.

B.3.1. Finite element method

As described in section 3.2 ("Physical models"), we use a hyperelastic constitutive model
based on the neo-Hookean model of Smith et al. [333]:

Ψ(q, θ) = µ

2 (IC − 3) + λ

2 (J − α)2 − µ

2 log(IC + 1). (B.3.1)

The Lamé parameters, λ, µ, control the element’s resistance to shearing and volumetric
strains. These may be specified on a per-element basis, allowing us to represent heterogeneous
materials. In contrast to other work using particle-based models [64], we adopt a mesh-based
discretization for deformable shells and solids. For thin-shells, such as cloth, the surface is
represented by a triangle mesh as in Figure B.3.1a, enabling straightforward integration with
our triangle mesh-based differentiable rasterizer [111, 112]. For solids, we use a tetrahedral
FEM model as illustrated in Figure B.3.1b. Both these models include a per-element activation
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parameter α, which for thin-shells, allows us to control the relative dihedral angle between
two connected faces. For tetrahedral meshes, this enables changing the element’s volume,
enabling locomotion, as in the control-fem example.

B.3.2. Contact
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Fig. B.3.2. Contact Model: To model non-interpenetration constraints we use a relaxed
model of contact that replaces a delta function with a linear hinge corresponding to a quadratic
penalty energy (a). To model friction we use a relaxed Coulomb model, that replaces the
step function with a symmetric hinge (b).

Implicit contact methods based on linear complementarity formulations (LCP) of contact
may be used to maintain hard non-penetration constraints [242]. However, we found relaxed
models of contact—used in typical physics engines [331]—were sufficient for our experiments.
In this approach, contact forces are derived from a one-sided quadratic potential, giving rise
to penalty forces of the form B.3.2a. While Coulomb friction may also be modeled as an LCP,
we use a relaxed model where the stick regime is represented by a stiff quadratic potential
around the origin, and a linear portion in the slip regime, as shown in Figure B.3.2b. To
generate contacts, we test each vertex of a mesh against a collision plane and introduce a
contact within some distance threshold d.

B.3.3. Pendula

We also implement simple and double pendula, as toy examples of well-behaved and
chaotic systems respectively, and estimate the parameters of the system (i.e., the length(s) of
the rod(s) and initial angular displacement(s)), by comparing the rendered videos (assuming
uniformly random initial guesses) with the true videos. As pendula have extensively been
studied in the context of differentiable physics simulation [227, 242, 225, 265, 224, 266],
we focus on more challenging systems which have not been studied in prior art.
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B.3.4. Incompressible fluids

As an example of incompressible fluid simulation, we implement a smoke simulator
following the popular semi-Lagrangian advection scheme of Stam et al. [336]. At 2:20 in
our supplementary video attachment, we show an experiment which optimizes the initial
velocities of smoke particles to form a desired pattern. Similar schemes have already been
realized differentiably, e.g. in DiffTaichi [64] and autograd [338].

B.4. Source-code transformation for automatic differen-
tiation

The discrete adjoint method requires computing gradients of physical quantities with
respect to state and design parameters. To do so, we adopt a source code transforma-
tion approach to perform reverse mode automatic differentiation [64, 339]. We use a
domain-specific subset of the Python syntax extended with primitves for representing
vectors, matrices, and quaternions. Each type includes functions for acting on them,
and the corresponding adjoint method. An example simulation kernel is then defined as follows:

1 @kernel

2 def integrate_particles (

3 x : tensor ( float3 ),

4 v : tensor ( float3 ),

5 f : tensor ( float3 ),

6 w : tensor (float),

7 gravity : tensor ( float3 ),

8 dt : float ,

9 x_new : tensor ( float3 ),

10 v_new : tensor ( float3 )

11 ):

12

13 # Get thread ID

14 thread_id = tid ()

15

16 # Load state variables and parameters

17 x0 = load(x, thread_id )

18 v0 = load(v, thread_id )

19 f0 = load(f, thread_id )

20 inv_mass = load(w, thread_id )

21

22 # Load external forces

23 g = load(gravity , 0)

24
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25 # Semi - implicit Euler

26 v1 = v0 + (f0 * inv_mass - g * step( inv_mass )) * dt

27 x1 = x0 + v1 * dt

28

29 # Store results

30 store(x_new , thread_id , x1)

31 store(v_new , thread_id , v1)

Listing B.1. Particle Integration Kernel

At runtime, the kernel’s abstract syntax tree (AST) is parsed using Python’s built-in
ast module. We then generate C++ kernel code for forward and reverse mode, which may
be compiled to a CPU or GPU executable using the PyTorch torch.utils.cpp_extension
mechanism.

This approach allows writing imperative code, with fine-grained indexing and implicit
operator fusion (since all operations in a kernel execute as one GPU kernel launch). Each
kernel is wrapped as a PyTorch autograd operation so that it fits natively into the larger
computational graph.

B.5. MPC Controller Architecture
For our model predictive control examples, we use a simple 3-layer neural network

architecture illustrated in Figure B.5.3. With simulation time t as input we generate N
phase-shifted sinusoidal signals which are passed to a fully-connected layer (zero-bias), and a
final activation layer. The output is a vector of per-element activation values as described in
the previous section.

Fig. B.5.3. Our simple network architecture used the for control-walker and control-fem
tasks.

155



B.6. Loss landscapes for parameter estimation of de-
formable solids

∇Sim integrates several functional blocks, many of which contain nonlinear operations.
Furthermore, we employ a pixelwise mean-squared error (MSE) loss function for estimating
physical parameters from video. To demonstrate whether the gradients obtained from ∇Sim
are relevant for the task of physical parameter estimation, in Figure 2 of the main paper, we
present an analysis of the MSE loss landscape for mass estimation.

B.6.1. Elasticity parameter

We now present a similar analysis for elasticity parameter estimation in deformable
solids. Figure B.6.4a shows the loss landscape when optimizing for the Lamé parameters of
a deformable solid FEM. In this case, both parameters λ and µ are set to 1000. As can be
seen in the plot, the loss landscape has a unique, dominant minimum at 1000. We believe
the well-behaved nature of our loss landscape is a key contributing factor to the precise
physical-parameter estimation ability of ∇Sim.

B.6.2. Loss landscape in PyBullet (REINFORCE)

Figure B.6.4 shows how optimization using REINFORCE can introduce complications.
As the simulation becomes unstable with masses close to zero, poor local optimum can
arise near the mean of the current estimated mass. This illustrates that optimization
through REINFORCE is only possible after careful tuning of step size, sampling noise and
sampling range. This reduces the utility of this method in a realistic setting where these
hyperparameters are not known a priori.

B.6.3. Impact of the length of a video sequence

To assess the impact of the length of a video on the quality of our solution, we plot the
loss landscapes for videos of varying lengths in Fig. B.6.5. We find that shorter videos tend
to have steeper loss landscapes compared to longer ones. The frame-rate also has an impact
on the steepness of the landscape. In all cases though, the loss landscape is smooth and has
the same unique minimum.

B.7. Dataset details
For the rigid-body task of physical parameter estimation from video, we curated a dataset

comprising of 14 meshes, as shown in Fig. B.7.6. The objects include a combination of
primitive shapes, fruits and vegetables, animals, office objects, and airplanes. For each
experiment, we select an object at random, and sample its physical attributes from a
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(a) Lamé loss landscape (b) PyBullet loss landscape

Fig. B.6.4. Loss Landscapes: (left) when optimizing for the elasicity parameters of a
deformable FEM solid. Both the Lamé parameters λ and µ are set to 1000, where the MSE
loss has a unique, dominant minimum. (right) when optimizing for the mass, the reward
(negative normalized MSE) has a maximum close to the ground truth maximum but the
negative log likelihood of each mass sample that’s multiplied with the reward only shows a
local minimum that’s sensitive to the center of the current mass estimate.

Fig. B.6.5. Impact of the length of a video sequence on the loss landscape. Notice
how the loss landscape is much steeper for smaller videos (e.g., MSE of first and last frames).
Nonetheless, all cases have a smooth loss landscape with the same unique minimum.

predefined range: densities from the range [2, 12] kg/m3, contact parameters ke, kd, kf from
the range [1, 500], and a coefficient of friction µ from the range [0.2, 1.0]. The positions,
orientations, (anisotropic) scale factors, and initial velocities are sampled uniformly at random
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from a cube of side-length 13m centered on the camera. Across all rigid-body experiments,
we use 800 objects for training and 200 objects for testing.

Fig. B.7.6. Objects used in our rigid-body experiments. All of these meshes have been
simplified to contain 250 or fewer vertices, for faster collision detection times.

B.8. Baselines
In this section, we present implementation details of the baselines used in our experiments.

B.8.1. PyBullet + REINFORCE

To explore whether existing non-differentiable simulators can be employed for physical
parameter estimation, we take PyBullet [254] – a popular physics engine – and make it
trivially differentiable, by gradient estimation. We employ the REINFORCE [232] technique
to acquire an approximate gradient through the otherwise non-differentiable environment.
The implementation was inspired by [253] and [340]. In concurrent work, a similar idea was
explored in [249].

In PyBullet, the mass parameter of the object is randomly initialized in the range [0, Nv],
where Nv is the number of vertices, the object is set to the same starting position and
orientation as in the dataset, and the camera parameters are identical to those used in the
dataset. This configuration ensures that if the mass were correct, the video frames rendered
out by PyBullet would perfectly align with those generated by ∇Sim. Each episode is rolled
out for the same duration as in the dataset (60 frames, corresponding to 2 seconds of motion).
In PyBullet this is achieved by running the simulation at 240 Hz and skipping 7 frames between
observations. The REINFORCE reward is calculated by summing the individual L2 losses
between ground truth frames and PyBullet frames, then multiplying each by −1 to establish
a global maximum at the correct mass, in contrast with a global minimum as in ∇Sim. When
all individual frame rewards have been calculated, all trajectory rewards are normalized before
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calculating the loss. This ensures rewards are scaled correctly with respect to REINFORCE’s
negative sample log likelihood, but when the mass value approaches the local optimum, can
lead to instability in the optimization process. To mitigate this instability, we introduce reward
decay, a hyperparameter that slowly decreases the reward values as optimization progresses
in a similar manner to learning rate decay. Before each optimization step, all normalized
frame reward values are multiplied by reward_decay. After the optimization step, the decay
is updated by reward_decay = reward_decay ∗ decay_factor. The hyperparameters used
in this baseline can be found in Table B.8.1.

Parameter Value Meaning
no_samples 5 How often was the mass sampled at every step
optimization_steps 125 Total number of optimization steps
sample_noise 0.05 Std. dev. of normal distribution that mass is sampled from
decay_factor 0.925 Factor that reward decay is multiplied with after optimizer step
dataset_size 200 Number of bodies that the method was evaluated on

Table B.8.1. PyBullet-REINFORCE hyperparameters.

B.8.2. CNN for direct parameter estimation

In the rigid-body parameter estimation experiments, we train a ConvNet baseline, building
on the EfficientNet-B0 architecture [252]. The ConvNet consists of two convolutional layers
with parameters (PyTorch convention): (1280, 128, 1), (128, 32, 1), followed by linear layers
and ReLU activations with sizes [7680, 1024, 100, 100, 100, 5]. No activation is applied over
the output of the ConvNet. We train the model to minimize the mean-squared error between
the estimated and the true parameters, and use the Adam optimizer [255] with learning rate
of 0.0001. Each model was trained for 100 epochs on a V 100 GPU. The input image frames
were preprocessed by resizing them to 64× 64 pixels (to reduce GPU memory consumption)
and the features were extracted with a pretrained EfficientNet-B0.

B.9. Compute and timing details
Most of the models presented in ∇Sim can be trained and evaluated on modern laptops

equipped with graphics processing units (GPUs). We find that, on a laptop with an Intel i7
processor and a GeForce GTX 1060 GPU, parameter estimation experiments for rigid/nonrigid
bodies can be run in under 5-20 minutes per object on CPU and in under 1 minute on the
GPU. The visuomotor control experiments (control-fem, control-cloth) take about 30
minutes per episode on the CPU and under 5 minutes per episode on the GPU.
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B.10. Overview of available differentiable simulations
Table B.10.2 presents an overview of the differentiable simulations implemented in ∇Sim,

and the optimizable parameters therein.

pos vel mass rot rest stiff damp actuation g µ e ext forces
Rigid body X X X X X X X
Simple pendulum X X X
Double pendulum X X X
Deformable object X X X X X X X X
Cloth X X X X X X X
Fluid (Smoke) (2D) X

Table B.10.2. An overview of optimizable parameters in ∇Sim. Table columns are
(in order, from left to right): Initial particle positions (pos), Initial particle velocities (vel),
Per-particle mass (mass), Initial object orientation (rot), Spring rest lengths (rest), Spring
stiffnesses (stiff), Spring damping coefficients (damp), Actuation parameters (actuation),
Gravity (g), Friction parameters µ, Elasticity parameters (e), External force parameters (ext
forces).

B.11. Limitations
While providing a wide range of previously inaccessible capabilities, ∇Sim has a few

limitations that we discuss in this section. These shortcomings also form interesting avenues
for subsequent research.

• ∇Sim (and equivalently ∇PyBullet) are inept at handling tiny masses (100g and
less). Optimizing for physical parameters for such objects requires a closer look at
the design of physics engine and possibly, numerical stability.
• Articulated bodies are not currently implemented in ∇Sim. Typically, articulated
bodies are composed of multiple prismatic joints which lend additional degrees of
freedom to the system.
• While capable of modeling contacts with simple geometries (such as between arbitrary
triangle meshes and planar surfaces), ∇Sim has limited capability to handle contact-
rich motion that introduces a large number of discontinuities. One way to handle
contacts differentiably could be to employ more sophisticated contact detection
techniques and solve a linear complementarity problem (LCP) at each step, as done
in [242].
• Aside from the aforementioned drawbacks, we note that physics engines are adept at
modeling phenomena which can be codified. However, there are several unmodeled
physical phenomena that occur in real-world videos which must be resolved before
∇Sim can be deployed in the wild.
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B.12. Broader impact
Much progress has been made on end-to-end learning in visual domains. If successful,

image and video understanding promises far-reaching applications from safer autonomous
vehicles to more realistic computer graphics, but relying on these tools for planning and
control poses substantial risk.

Neural information processing systems have shown experimentally promising results on
visuomotor tasks, yet fail in unpredictable and unintuitive ways when deployed in real-world
applications. If embodied learning agents are to play a broader role in the physical world,
they must be held to a higher standard of interpretability. Establishing trust requires not
just empirical, but explanatory evidence in the form of physically grounded models.

Our work provides a bridge between gradient- and model-based optimization. Explicitly
modeling visual dynamics using well-understood physical principles has important advantages
for human explainability and debuggability.

Unlike end-to-end neural architectures which distribute bias across a large set of parameters,
∇Sim trades their flexibility for physical interpretability. This does not eliminate the risk
of bias in simulation, but allows us to isolate bias to physically grounded variables. Where
discrepancy occurs, users can probe the model to obtain end-to-end gradients with respect to
variation in physical orientation and material properties, or pixelwise differences. Differentiable
simulators like ∇Sim afford a number of opportunities for use and abuse. We envision the
following scenarios.

• A technician could query a trained model, "What physical parameters is the steering
controller most sensitive to?", or "What happens if friction were slightly lower on that
stretch of roadway?"
• An energy-conscious organization could use ∇Sim to accelerate convergence of rein-
forcement learning models, reducing the energy consumption required for training.
• Using differentiable simulation, an adversary could efficiently construct a physically
plausible scene causing the model to produce an incorrect prediction or take an unsafe
action.

Video understanding is a world-building exercise with inherent modeling bias. Using
physically well-studied models makes those modeling choices explicit, however mitigating
the risk of bias still requires active human participation in the modeling process. While a
growing number of physically-based rendering and animation efforts are currently underway,
our approach does require a high upfront engineering cost in simulation infrastructure. To
operationalize these tools, we anticipate practitioners will need to devote significant effort to
identifying and replicating unmodeled dynamics from real world-trajectories. Differentiable
simulation offers a computationally tractable and physically interpretable pathway for doing
so, allowing users to estimate physical trajectories and the properties which govern them.
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