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Research Objectives
Modern AI technologies have achieved remarkable success in processing language, images, and
speech, yet they falter in unpredictable and unintuitive ways when deployed on robotic systems in
the physical world. Their abilities to perceive, reason, and act in the real world pale in comparison
to humans and other biological entities, raising the critical question: how do we bridge this gap?

The success of today’s machine learning approaches hinges on the availability of large volumes
of high-quality data. In a robotics context, such data must be acquired by interacting with
the real-world; which is infeasible considering the diversity of embodiments, environments, and
tasks of interest. Developing general-purpose robots capable of autonomous operation across a
wide range of environments, undertaking tasks routinely accomplished by humans necessitates
advancements along multiple fronts: novel algorithms for sensorimotor control, computational
learning frameworks, and cognitive architectures.

My research focuses on designing structured world models that will enable embodied
intelligence systems (robots, mixed reality devices, intelligent visual assistants) to perceive,
reason, and act in the real world just as humans are able, and ultimately surpass
human-level intelligence.

Building structured world models will enable more robust operation, and with significantly lesser
amounts of data, by drawing on our rich understanding of the physical world. This also helps
in the identification of newer computational paradigms (such as differentiable and probabilistic
computing) and the implementation of cognitive abstractions (such as analysis-by-synthesis) that
are cruicial for robots to understand their environment and accomplish tasks therein.

My research group will focus primarily on the following themes:

• Spatial and Semantic Understanding: Developing visual perception systems that
effectively represent the spatial structure and semantics of the environment for robots.

• Physical Understanding: Devising computational models to understand the physical
properties of objects in the robot’s environment, facilitating interaction.

• Multimodal Understanding: Integrating cues from other modalities such as audio,
touch, and language, to enhance and robustify our understanding of the physical world.

I will devise novel ways of combining our vast wealth of prior knowledge of real-world phenomenon
with modern learning-based approaches, bringing together the best of both worlds. Doing so will
enable robots to accomplish a number real-world tasks that are “seemingly ” trivial for humans,
but currently impossible for AI systems. My research program complements, extends,
and synergizes best with existing robotics, computer vision, machine learning, and
graphics research clusters.
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Queries with Both Image and Language Context

Find something this guy would play with

ConceptGraphs: “Yes! It's probably a piece of 
green fabric. You can push it without damage.”

Can I push this object 
and traverse through?

Open-vocabulary Pick and Place

Traversability Estimation

Pick up the 
“cuddly quacker”

Complex Text Queries

ConceptGraphs

My wrist hurts from using 
my screwdriver all day. 

Anything to help?
I'm craving something 

fizzy and sweet.

ConceptGraphs: Go to 
object 18, a power drill

ConceptGraphs: Go to 
object 37, a soda can

ConceptGraphs

3D Object Detection

Object: cabinet
Center: (x, y, z)

Object Caption

“A picture of a boat”

Spatial Reasoning

The ottoman is on 
the carpet. 

Scene Structure

A white sofa with 3 
pillows on the top.

Figure 1: ConceptGraphs builds 3D scene graphs from RGB-D images and camera poses. The 3D scene
graphs comprise nodes (objects in the scene) and edges (spatial/semantic relationships among objects).
Different from prior work on 3D scene graphs, ConceptGraphs is open-vocabulary, meaning we do not
assume a predetermined set of node/edge types, and can represent a large space of concepts that adapt
to a downstream task. The object-centric nature of ConceptGraphs allows easy map maintenance and
promotes scalability, and the graph structure provides relational information within the scene. Further-
more, our scene graph representations are easily mapped to natural language formats to interface with
LLMs, enabling them to answer complex scene queries and granting robots access to useful facts about
surrounding objects, such as traversability and utility. We implement and demonstrate ConceptGraphs
on a number of real-world robotics tasks across wheeled and legged mobile robot platforms. (Webpage)

Figure 2: ∇Sim is a GPU-based differentiable simulator, comprising a differentiable multiphysics engine
and a differentiable renderer. The differentiable multiphysics engine takes as input a scene description
(objects, states, material properties, etc.) and runs a forward simulation to compute states. These
states and additional scene parameters (texture/lighting) are fed to a differentiable rendering engine
which renders out a video sequence. This predicted video is compared to an observed video to define
a discrepancy/loss. Since the entire simulation process is differentiable, we can perform gradient-based
optimization to recover the true physical and rendering parameters, for a range of simulations: rigid
bodies, deformable solids, thin-shell solids (cloth), and incompressible fluids. As opposed to prior work
on differentiable physics engines, which assumes the availability of 3D supervision over object states,
∇Sim unifies physics and rendering engines, enabling physical parameter estimation and visuomotor
control from 2D images. (A short video summary)
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1 Spatial and Semantic Understanding
Under this theme, my research group will develop algorithms to model the 3D geometric struc-
ture and semantics of environments for robotic interaction. This will enable robots to localize
themselves and operate safely within the environment. We integrate traditional 3D mapping
techniques with ideas from modern machine learning, creating semantic 3D maps that provide
detailed object information, facilitating a broader range of tasks.

1.1 Contributions and ongoing initiatives
Differentiable computing for 3D mapping: In ∇SLAM(gradSLAM) [1], I introduced a
differentiable computing approach to simultaneous localization and mapping (SLAM). By mak-
ing each computation in the SLAM pipeline differentiable—introducing reparameterizations for
non-differentiable operators where necessary—I enabled gradient computation and propagation
through the SLAM system. This allows for backpropagating errors from geometric reconstruc-
tions to sensor inputs, enabling SLAM systems to be integrated as layers within neural networks.
My work led to the first fully differentiable SLAM system, laying the groundwork for combining
learning-based methods with traditional SLAM (as I pursued further in [2, 3, 4]).

3D scene graphs for perception and planning: I developed approaches to build symbolic
abstractions, 3D scene graphs, from real-world RGB-D perception, enabling a rich semantic
understanding of the scene [4] (Fig. 1). I also designed algorithms that can efficiently (and
provably optimally) produce task plans over large scene graph state spaces by task-conditioned
pruning to eliminate extraneous scene graph components, reducing planning complexity [5].

Integrating differentiable 3D vision and graphics: Vision and graphics are inverse problems:
while vision deals with lifting images to 3D, graphics deals with rendering 3D scenes to create
realistic images. Systematic integration of vision and graphics pipelines will enable the design of
self-supervised and weakly-supervised learning techniques that can leverage discrepancies across
the two (inverse) processes for gradient-based learning. I leverage this paradigm in [6, 7, 8].

1.2 Future directions
Active, Persistent Perception: Much of the work that exists in the spatial understanding space
(including my work listed above) is episodic : mapping happens afresh each time a scene changes,
and happens so passively. However, this mechanism of acquiring scene representations is in stark
contrast with humans and other biological entities. They possess persistent representations of
the world that allow them to rapidly infer object state changes over time. My work will shift
away from episodic and passive perception, to active, persistent perception, where robots actively
decide on their subsequent actions, which in-turn affect their subsequent sense-data.

Functional spatiotemporal abstractions for perception and planning: I will also devise
task-centric, opposed to geometry-centric scene representations; where the downstream task of
interest determines the objects that a mapping system must represent in its spatial model. I am
particularly interested in building scene representations that enable task planning at varying levels
of spatiotemporal and symbolic abstraction.
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2 Physical Understanding
Under this research theme, my research group will develop computational models that will enable
robots to understand the physical properties of objects and scenes from images. Of particular
interest are structured computational models that deeply integrate our understanding of physics
and graphics, as they are data-efficient, interpretable, and easily reconfigured for new tasks.

2.1 Contributions and ongoing initiatives
Differentiable world models for physical understanding: In a series of works [9, 10, 11, 7],
I have developed computational models that perceive physical properties—such as mass, friction,
elasticity—of objects in the world solely from videos. While innate to humans, such behaviors
have proved extremely hard to replicate in machine learning systems, owing to the vast variability
in terms of geometric and physical properties that real-world objects exhibit.

In ∇Sim [9] (Fig. 2), we presented, for the first time, a system that could accurately infer the
physical properties of objects without requiring any training data a priori. Key to enabling this
is a differentiable simulation and rendering engine, which models the phenomenon of video gen-
eration, including object physical constraints and dynamics, and image synthesis, in the form
of a differentiable computation graph. Since all computations herein are differentiable, we can
reliably optimize for accurate physical and material properties of objects by gradient-based in-
ference. In [11], we extend this differentiable simulation framework to compute globally optimal
solutions, leveraging Bayesian optimization. In PAC-NeRF [7], we employed neural rendering to
simulatenously estimate both the geometric and physical properties of objects.

2.2 Future directions
Differentiable probabilistic programs for physical understanding: While differentiable
simulators have enabled great strides in inferring physical properties from pixel observations and
in visuomotor control, they are fundamentally unable to capture and reason about uncertainty
in their observations and estimates; essential for real-world robotic interaction. To enable this,
I will leverage modern probabilistic computing machinery to develop differentiable probabilistic
programs, which in addition to being amenable to gradient-based inference, are also amenable to
automated Bayesian inference. In a first step towards this, in [10], we developed a probabilistic
program that infers a posterior distribution over the discrete, graph-structured kinematic chain
and continuous-valued physical properties of objects.

Approximate simulators as robot world models: A precise physics simulator, whether dif-
ferentiable or not, can greatly aid robotic interaction with objects. However, creating an exact
world model is often overly complex or impractical. My hypothesis is that high-fidelity simulators
are not necessary for all robotic tasks. Instead, we need approximate simulators that can generate
sufficiently accurate predictions for specific tasks and quickly adapt to new object and environ-
ment configurations with minimal interaction. This approach aligns with the intuitive physics
engine hypothesis, which proposes an innate, non-verbal, and algorithmic reasoning process. My
research group will will design and employ approximate simulators for general-purpose robotics
tasks requiring physical reasoning, such as object stacking, reconfiguration, and assembly.
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Clustering Open-set 
Features

“Drive me to a roundabout”

“Baymax”

Fine-grained Concepts

How far is the tv 
from the fridge? 6.3 m

Open-set 
Multimodal 

3D Maps

3D Spatial Reasoning

Open-set Queries for Autonomous DrivingZero-shot Tabletop Rearrangement

“Push the goldfish to the right of the yellow line”

Text Query

“A comfy place to sit 
and watch tv”

Audio Query

What sounds like 
[ceramic clinking audio]

Image Query

What looks like 
[image of cabinet]

Click Query

Find points like 
[click on lamp]

Figure 3: ConceptFusion builds dense 3D maps where each point in the map is assigned, in addition
to 3D position, orientation, and color, vision-language(-audio) aligned representations extracted from
foundation models. We demonstrate a surprisingly simple approach where none of the vision-language(-
audio) models require 3D pretraining; we extract features over 2D images and employ traditional RGB-D
fusion techniques to compute fused 3D features for each map point. These maps are built online, and
can be queried for arbitrary concepts specified as text, images, audio samples, or clicks on the 3D
map. The fused features have an implicit understanding of semantic concepts, as evident by visualizing
clusters obtained from a K-means algorithm. ConceptFusion features are at retaining fine-grained long-
tail concepts, such as the disney character “Baymax”. We demonstrate ConceptFusion on real-world
tabletop manipulation and urban autonomous driving. (Webpage)

Figure 4: 3DLM is a neurosymbolic approach to 3D scene understanding. We do not require any
3D pretraining and only assume access to frozen (potentially black-box) off-the-shelf language models
(LMs) and image-language models (ILMs). We leverage a symbolic 3D scene representation (a 3D
scene graph), a set of neurosymbolic modules operating over the 3D scene, and a language model to
transform 3D understanding tasks posed in natural language to a series of instructions that are executed,
to provide prescriptive and accurate responses to queries over an input 3D scene. Shown above is a set
of representative outputs from 3DLM. Notice how we are able to address complex user queries, including
those that require situated reasoning by composing spatial, logical, and neural operators including complex
modules like trajectory planning and neural rendering.
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3 Multimodal Understanding
Under this research theme, I will integrate multiple cues such as vision, audio, touch, and language
to construct multimodal generative world models that offer far greater adaptability, robustness,
and a richer understanding compared to visual understanding alone. This will help understand
properties of the world that simply cannot be perceived via vision (weight, stability, roughness,
temperature, etc.), and additionally robustify learning by developing models that can simultane-
ously process and explain multiple sensory stimuli.

3.1 Contributions and ongoing initiatives
Open-vocabulary Multimodal 3D Representations: While 3D maps are central to robot
navigation, planning, and interaction, existing approaches that integrate semantic concepts with
3D maps have two key limitations. First, they are closed-set, meaning they can only reason about
a finite set of concepts, pre-defined at training time. Second, they are unimodal, aggregating
data solely from vision sensing. In ConceptFusion [3] (Fig. 3), I developed the first open-set
and multimodal 3D mapping approach that integrated cues from images, language, and audio.
This enables querying maps for arbitrary concepts, including those unseen during training, using
diverse inputs such as text, sound, and images. We also developed ConceptGraphs [4] (Fig. 1),
interfacing these compact 3D representations with large language models to handle complex
user queries. For instance, ConceptGraphs can direct a robot to a duct tape roll in response
to a query like “find something to temporarily secure a broken zipper ”. We also deploy this for
outdoor navigation on a full-scale autonomous driving platform [12] and aerial vehicles [13].

Neurosymbolic approaches to 3D Understanding: Despite their impressive linguistic abili-
ties, large (image-)language models have been demonstrably brittle, particularly for tasks involving
(2D) spatial reasoning, localization, and symbol grounding; which is further exacerbated when
designing such models for 3D scenes. In 3DLM [14] (Fig. 4), we developed a language model
that interfaces with 3D scenes, enabling users to specify a diverse range of queries about the 3D
scene in natural language. Opposed to relying solely on the ability of large transformer models
to reason about spatial and logical attributes, we leverage an explicit symbolic scene structure,
a 3D scene graph, in conjunction with neural and symbolic operators that enable prescriptive
3D reasoning capabilities. These queries enable a multitude of 3D understanding tasks including
question answering and dialog, scene captioning, and referring object detection. We also explore
the impact of such neurosymbolic operators in [3, 15].

3.2 Future directions
Multisensory digital twins of real-world environments: A significant challenge in com-
bining multisensory understanding with machine learning is the lack of high-quality, real-world-
aligned multisensory data. Existing simulation environments, while modeling aspects like physics,
rendering, and increasingly, sound or touch, face an irreducible reality gap. This prohibits the
deployment of approaches developed in such simulators into real-world scenarios. To this end, I
aspire to develop multisensory simulation environments by digitizing the real world environments
at high fidelity. This will drive the next wave of advancements in multisensory learning.
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