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Abstract— Reconstruction of dynamic objects in a scene is a
highly challenging problem in the context of SLAM. In this
paper, we present a real-time monocular object localization
system that estimates the shape and pose of dynamic objects
in real-time, using video frames captured from a moving
monocular camera. Although the problem seems to be ill-posed,
we demonstrate that, by incorporating prior knowledge of the
object category, we can obtain more detailed instance-level re-
constructions. As opposed to earlier object model specifications,
the proposed shape-prior model leads to the formulation of a
Bundle Adjustment-like optimization problem for simultaneous
shape and pose estimation.

Leveraging recent successes of Convolutional Neural Net-
works (CNNs) for object keypoint localization, we present a
CNN architecture that performs precise keypoint localization.
We then demonstrate how these keypoints can be used to
recover 3D object properties, while accounting for any 2D lo-
calization errors and self-occlusion. We show significant perfor-
mance improvements compared to state-of-the-art monocular
competitors for 2D keypoint detection, as well as 3D localization
and reconstruction of dynamic objects.

I. INTRODUCTION

Despite being the holy grail for roboticists for long, SLAM
in dynamic environments remains largely unsolved. All state-
of-the-art SLAM systems [1], [2], [3], [4] handle dynamic
objects by filtering them using standard outlier rejection
schemes. With the recent surge in interest for autonomous
driving applications, SLAM in presence of moving vehicles
has become a desirable component for higher level inference
in road scene understanding applications. Autonomous driv-
ing platforms are usually equipped with LiDAR, as well as
stereo cameras, which are usual sensing options in a SLAM
setup. However, it is challenging and interesting to exploit
the potential of cheap, off-the-shelf monocular cameras for
dynamic, object-based SLAM.

Simultaneous estimation of shape and pose of objects from
a moving monocular camera is inherently ill-posed [5], [6].
However, guided by the motivation that humans seem to
infer these concepts, owing to their vast prior knowledge, we
propose to endow SLAM systems with similar capabilities.
We achieve this by making use of shape priors to capture
the variations in shape of a particular object category. These
shape priors are learnt offline, over a small annotated dataset
consisting of instances sampled from the category. During
inference, we demonstrate the usefulness of these shape
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Fig. 1. Example output from the proposed monocular object localization
system. The system is capable of estimating the shape and pose of dynamic
objects in real time. The image shows the estimated shapes (wireframes)
projected onto the image. Above each of the wireframes is a depth estimate
to the object. The inset plot shows the top view of the localization output
(red) overlaid on the ground truth (green). Even objects 50 meters are
accurately localized.

priors in the formulation of an optimization problem that
can recover the pose and shape of a vehicle in real-time. The
formulated optimization problem produces valid results even
when the input sequence consists of only a single image [7],
and hence naturally falls into an object-SLAM framework.

Leveraging the recent successes of Convolutional Neural
Networks (CNNs), a number of systems [8], [9], [10], [11]
have been proposed that attempt to infer 3D pose of ob-
ject categories, using discriminatively trained semantic part
locations (keypoints) as evidence. Although existing CNN
architectures [12], [13], [7], [14] localize keypoints fairly
well, they fail to capture pairwise relations among various
keypoints, when enough training data is not available. Guided
by this, and by the motivation that keypoint visibilities
are highly correlated with the viewpoint, we train a single
network that predicts keypoints, while capturing consistent
pairwise inter-keypoint relationships.

Using the keypoint estimates obtained from the CNN, we
formulate a multi-view adjustment problem to recover the
3D locations of the object in each frame. This circumvents
problems with state-of-the-art monocular SfM systems for
outdoor scenes [5], [15], which rely on sparse matches
and usually fail when a high fraction of scene objects are
dynamic. The proposed system, on the other hand, can run
on arbitrarily long (or short) sequences without collapsing,
as we rely on discriminatively trained feature points. The
approach has several runtime flavors typical of a visual lo-
calization system and can operate in batch mode, incremental
mode, or in a sliding window mode.

Contributions:

• We present a novel method of incorporating dynamic
objects into a monocular localization framework, by
using shape priors, that capture the 3D shape of an
object category.



Fig. 2. Illustration of the proposed pipeline. Clockwise from Top-Left: The system takes as input an image sequence with 2D object bounding boxes
detected. Each of the bounding boxes are then processed by the proposed keypoint localization CNN to obtain 2D locations of a discriminative set of
semantic parts. These locations are then incorporated into the proposed multi-view shape and pose adjustment scheme to estimate 3D properties (pose,
shape) of the object.

• We propose a solution to circumvent catastrophic failure
that SLAM systems experience when a large fraction
of the scene is dynamic. We avoid this collapse by
training a CNN to precisely localize a discriminative
set of features, rather than relying on matches from
handcrafted feature descriptors [1].

• We propose a lightweight optimization pipeline that
refines the initial estimates to localize dynamic objects
in real-time, taking in only a sparse set of feature
matches, and robust to self-occlusion.

Evaluation: We perform an extensive analysis of the
proposed approach on the KITTI [16] benchmark for au-
tonomous driving. We evaluate our approach on about
2, 000 frames of recorded autonomous driving scenarios and
demonstrate superior performance with respect to published
monocular competitors. We also perform an extensive evalua-
tion of our proposed CNN architecture for semantic keypoint
localization and show an improvement of more than 12%
PASCAL-3D dataset. 1

II. RELATED WORK

3D Properties from a Single Image

Estimating 3D viewpoint or 3D shape from a single image
has seen a lot of work [17], [10], [7], [18], [9], [19] in the last
couple of years, especially with the availability of large-scale
datasets such as ShapeNet [20], PASCAL-3D [21], etc.

Most approaches [7], [9], [10] follow a conventional 2D-
to-3D estimation pipeline. First a set of keypoint locations
on the 2D (RGB) image is estimated. Then, using a prior
shape model [7], [10], or by using a dictionary of poses
[9], a deformation/alignment problem is formulated that
outputs the 3D structure best explaining the 2D evidence
(localized keypoints). In all these cases,explicit 3D keypoint
estimates are not required, as they are marginalized out in
the estimation process, as highlighted in [9].

Contrary to these, Zia et al [18] propose an end-to-end
system that output viewpoint, 2D keypoints, 3D keypoints,

1The code and trained models will be made publicly available.

as well as keypoint occlusion information. Synthetic models
available from ShapeNet [20] are used to train a deep net-
work for the task. Although detection performance under oc-
clusion/truncation is improved by a large margin (over prior
art), the synthesized data fails to capture real-world occlusion
patterns. Also, the output coordinates are in a canonical
frame of reference. On the other hand, the proposed approach
optimizes directly in the metric camera coordinate system, to
obtain estimates that can be incorporated into a higher level
system, such as a trajectory planner or a cruise controller.

While all these approaches estimate the shape/pose of
objects from a single image, they do not provide accurate
metric localization estimates sutitable for SLAM systems.
Moreover, in the context of autonomous driving, we can read-
ily exploit temporal information to obtain better predictions.
Keypoint Localization

Recent successes in single-image shape estimation can be
attributed to the availability of deep keypoint localization
architectures. One of the earlier approaches for keypoint
localization has been presented in [12]. Keypoint estimates
from two different scales are composed along with a view-
point prior to produce keypoint likelihoods across the image.
However, the response maps from the CNN were highly
multi-modal. As a consequence, accuracy suffered.

In [22], [13], [7], finetuning subnetworks were proposed to
refine the estimates from a coarse-grained regressor. In [18],
intermediate shape concepts are provided to better supervise
the learning process.

Recently, stacked hourglass networks [14] have been pro-
posed for the task of keypoint localization for human pose
estimation. These networks are, by construction, multi-scale
and possess an iterative refinement nature. We choose this as
our base architecture and enforce spatial constraints among
keypoints, for better performance.
Reconstructing Moving Vehicles from a Monocular Se-
quence

Philosophically, the closest work to ours is the one by
Falak et al [5], where a stochastic hill-climbing based opti-
mization scheme is proposed over the shape and pose param-



Fig. 3. Proposed network architecture. The yellow and red blocks indicate the keypoint likelihoods and their differences respectively. Joint training over
both enables the network to capture pairwise relations among keypoints and serves as additional regularization to prevent overfitting.

eters of a multi-view Active Shape Model (ASM). However,
they demonstrate 3D tracking only for short sequences (40-
50 frames). The optimization scheme used is also not suitable
for real time inference.

Song et al [15], [23] propose a monocular SfM framework
for tracking moving vehicles in autonomous driving scenar-
ios. However, they represent cars as 3D bounding boxes
and track these bounding boxes across frames. Moreover,
they rely on feature matching and optical flow to obtain
tracks across long sequences. We use a more detailed shape
representation compared to a 3D bounding cuboid. We also
use discriminatively trained features to avoid catastrophic
failure, and enable long-term tracking.

III. OUR APPROACH
We introduce a novel way of characterizing objects in a

SLAM framework. This section presents the proposed object
characterization, the CNN architecture for keypoint local-
ization, and finally the backend optimization for the object
localization system. Fig. 2 illustrates the overall picture of
the proposed pipeline.

To demonstrate our approach, we take up the scenario of
autonomous driving, where our target objects for reconstruc-
tion are vehicles (predominantly cars and minivans).

A. Shape Priors
We encode domain knowledge about the 3D shape of

an object category in what we call a shape prior. We
define the shape of an object to be an ordered collection
of semantic keypoints. We hypothesize, as in [24], [8], [7],
that the shape of a particular instance can be expressed as the
sum of the mean shape of the object category and a linear
combination of certain basis shapes. Intuitively, this means
that the keypoints of an object do not deform arbitrarily
from one instance to another; rather they span a much lower
dimensional subspace of the entire space of possible shapes.
Formally, a shape basis is defined as a mean shape S̄ and a
set of B basis shapes Vk (k = {1..K}), such that the shape
of any new instance S can be expressed as

Sm = S̄ +

B∑
j=1

λjVj (1)

In 1, λj is the weight of the jth basis shape. These
basis shapes can be learnt entirely from 2D images, as
demonstrated in [7], [8], or from 3D CAD models, as
presented in [25]. We follow the method of [7] and learn the
shape priors over a 2D keypoint annotated dataset consisting
of about 300 images from the PASCAL3D [21] dataset.

B. Keypoint Localization CNN

Using traditional feature extraction methods, it is very
hard to obtain consistent feature matches on dynamic objects
across long sequences [15], [5]. Hence, we train a stacked
hourglass CNN architecture to accurately localize the chosen
semantic keypoints.

Fig. 3 illustrates the network architecture. Unlike existing
architectures for keypoint localization [12], [13], [22], the
stacked hourglass maintains fixed spatial dimensions (height,
width) across the network. It takes in a 3 × 64 × 64
image of the resized, cropped bounding box containing a
car, as input. The core component of the network is what
we call an hourglass [14], which consists of a symmetric
encoder and a decoder block. To compensate for the loss of
information due to pooling in the encoder block, a set of skip
connections forward data (via a series of convolutions) to the
corresponding decoder block. After each such hourglass, the
network outputs a set of keypoint likelihood maps (one map
per keypoint) over the entire image. Multiple such hourglass
modules are stacked on top of each other to iteratively refine
the keypoint likelihoods. Predictions from one hourglass are
fed into the network via a 1 × 1 convolution block. An
intermediate loss function is applied to the network output
at the end of each hourglass. This kind of intermediate
supervision has shown to perform better than scenarios where
loss has been applied only at the end of the network [14],
[18].

CRF-Style Stacked Hourglass Networks
To explicitly force the network to learn pairwise keypoint

distance relations, we propose a CRF-Style loss function
which is applied to the predictions at the end of each
hourglass. Given K keypoint pairs, KC2 combinations seem
likely. However, we note that pairwise keypoint distance
is transitive. For instance, if the pairwise distance between
keypoints i and j, as well as keypoints i and k, is enforced,
the pairwise distance between keypoints j and k enforces
itself implicitly. So, it is enough if we have K pairwise
potentials, which keeps the dimensionality of the pairwise
terms linear in the number of keypoints.

Specifically, apart from enforcing that constraint that each
keypoint likelihood must be precisely localized, we enforce
the constraint that inter-keypoint distances must be correct.
To accomplish this, for each of the K keypoints, we compute
the difference maps, i.e., for a given hourglass H, if hi
denotes the ith heatmap, we denote the difference heatmap
as ∆i = hi − h1 {i = 1..K}. Formally, we have a unary



potential Φ and a binary potential Ψ such that, for each
example xi in the training set i ∈ {1..N}, we minimize
the sum of the following functions simultaneously.

Φ(x) =

N∑
i=1

K∑
k=1

‖hk(xi)− hGTk (xi)‖2

Ψ(x) =

N∑
i=1

K∑
k=1

‖∆k(xi)−∆GT
k (xi)‖2

(2)

In Eq 2, hGTk (xi) and ∆GT
k (xi) represent the ground truth

keypoint likelihood and difference of keypoint likelihoods
respectively for the kth keypoint of the ith training sample.
If a keypoint is occluded, then its corresponding ground-truth
likelihood is zero across the entire image.

The network is trained end-to-end, minimizing the sum
of the unary and binary potentials via mini-batch stochastic
gradient descent.

C. Object Localization Formulation

In our object localization formulation, we use the learnt
Shape Priors to formulate a Bundle Adjustment-like opti-
mization problem to simultaneously estimate the shape and
pose of an object, given 2D keypoint localizations across a
sequence of image frames.

Problem Specification

We assume that a vehicle (stationary/moving) has been
detected (in 2D) over a sequence of F frames. In each frame,
each of the K keypoints have been localized by the keypoint
network. Throughout, we assume that i is an index over
keypoints (i ∈ {1..K}) and that f is an index over views
(frames) (f ∈ {1..F}). Given a set of 2D observations of
keypoint locations xfi , recover the 3D shape and pose of the
object, i.e, estimate Xf

i .
Note that directly estimating Xf

i is an ill-posed problem
[7], as this will allow for arbitrary deformations in the object
shape. We instead estimate the shape parameters λj (j ∈
{1..B}), where B is the number of shape deformation bases
in Eq 1. We also estimate the pose parameters Rf (rotation),
tf (translation), such that

Xf = Rf

X̄f +

B∑
j=1

λj ∗ Vj

+ tf (3)

In Eq 3, X̄f refers to the mean shape of the vehicle.

Pose and Shape Adjustment

To estimate the shape and pose of a vehicle over a
sequence, we optimize for a solution in the maximum
likelihood sense, i.e., that pose and shape are more likely
which explain the image evidence (2D keypoints) the best.
For the same, we make use of the pinhole camera model to
define a reprojection error that only allows deformations that
are in accordance with the class-specific shape prior.

Shape-Constrained Reprojection Error: Concretely,
given the camera intrinsics K, we specify the reprojection
error term as follows.

R =

F∑
f=1

K∑
i=1

∥∥∥∥∥∥xfi − π
KRf

X̄f +

B∑
j=1

λj ∗ Vj

+ Ktf

∥∥∥∥∥∥
2

(4)
Temporal Trajectory Consistency: This term imposes a

regularizer on the rotation and translation between successive
frames from a sequence. If ωf is the axis angle vector
corresponding to Rf ,

M =

F∑
f=2

(∥∥ωf−1 − ωf∥∥2 +
∥∥tf−1 − tf

∥∥2) (5)

Dimension Priors: This term imposes a regularizer on the
dimensions of the estimated shape. If H(Xf ), W(Xf ), and
L(Xf ) denote the height, width, and length of the wireframe
respectively, and if H̄, W̄ , and L̄ denote the priors for these
dimensions (computed over a training subset),

S =

F∑
f=1

∑
D∈{H,W,L}

∥∥D(Xf )− D̄
∥∥2 (6)

Ground-plane Prior: All objects that we observe are
constrained to lie on the Ground Plane. Hence, we can
additionally constrain the object rotation to be directed only
about the ground plane normal nfg . This is done by ensuring
that the axis angle vector ωf (corresponding to Rf ) is
parallel to the ground plane vector.

G =

F∑
f=1

∥∥nfg × ωf∥∥2 (7)

Finally, the adjustment problem is specified as follows.

min
λj ,ωf ,tf

ρ(R) +M+ ρ(S) + G (8)

Here, ρ represents an M-Estimator, and is used to reduce
the effects of outliers on the estimation procedure. In all our
experiments, we use the Tukey biweight M-estimator.

Initialization: We assume that we have the height of the
camera above the ground plane (XZ-plane) and use this to
initialize a rough estimate of the vehicle position, as in [15],
[23], [25]. We also obtain a rough viewpoint estimate from
a VGG-like CNN [12].

Self-occlusion and Imprecise Keypoints: We weigh each
observation (2D keypoint) by the corresponding confidence
score output by the keypoint localization network. The
network randomly fills in missing/occluded keypoints, and
these are usually discarded as outliers by the M-estimators
used for optimization.

Modes of Operation: The proposed pipeline provides all
runtime flavors expected of a typical SLAM system, viz.
batch mode, incremental mode, and windowed execution. In
the limiting case, the system can also be used to recover 3D
properties from just a single image. However, in that case,
pose and shape cannot be jointly estimated [7]. The approach
outlined in [7] must be adopted.



Approach < 20 m < 25 m < 30 m < 45 m > 45 m
Single-View [7] 0.45 0.99 1.37 2.24 5.41

Multi-View (Incremental) 0.46 0.73 1.35 2.01 4.45
Multi-View (Batch) 0.46 0.67 1.01 1.47 4.47

TABLE I
LOCALIZATION ERROR (IN METERS) OF ALL VEHICLES EVALUATED USING DIFFERENT MODES OF THE APPROACH.

Approach < 0.5 m (%) < 1 m (%) < 1.5 m (%) < 2 m (%)
Zia et al [25] N/A 55.2 76.24 89.38
Falak et al [5] N/A 70.44 95.08 98.36

Ours (Multi-view, batch mode) 68.19 81.82 98.00 100.00

TABLE II
LOCALIZATION ACCURACY (PERCENTAGE OF VEHICLES LOCALIZED BELOW THE THRESHOLD DISTANCE) OF ALL VEHICLES EVALUATED IN [5].

Approach Height Error (%) Width Error (%) Length Error (%) Size Error (Near) (%) Size Error (Far) (%)
Song et al [15] N/A N/A N/A 14.8 12.3
Song et al [23] N/A N/A N/A 7.3 11.8

Ours (incremental) 6.36 6.85 8.05 6.57 7.51

TABLE III
ERROR IN RECOVERY OF 3D PROPERTIES. THE Near AND Far CATEGORIES ARE IN ACCORDANCE WITH THE EVALUATION OF [15], [23]. OBJECTS

THAT ARE CLOSER THAN 15m ARE CONSIDERED Near.

IV. RESULTS

We perform a thorough qualitative and quantitative anal-
ysis of the proposed approach on several sequences of the
challenging KITTI tracking benchmark [16]. The sequences
are chosen such that there is sufficient variance in illumina-
tion, viewpoint, high fraction of moving vehicles, and a fair
mix of near and far vehicles. We compare the 3D localization
error obtained by the proposed approach with state-of-the-
art monocular competitors [5], [25], [15], [23]. Moreover, to
demonstrate the effectiveness of the proposed keypoint lo-
calization network, we evaluate the 2D keypoint localization
accuracy on the PASCAL3D dataset [21]. Finally, we show
qualitative results (Fig. 4) which indicate that the proposed
approach works over a wide range of vehicle shapes and
poses.

Datasets: We use the KITTI [16] tracking benchmark to
evaluate our localization accuracy. Sequences 2, 3, 4, 5, 6,
10, and 12, which contain a large number of moving vehi-
cles, were used for evaluating the approach. The remaining
sequences have been used to estimate dataset statistics, used
as priors in the optimization pipeline.

Keypoint Network Details: To train the keypoint network,
we use keypoint-annotated data for the car class of the
PASCAL3D [21] dataset. Random horizontal flips, crops,
and color space augmentation were employed to synthesize
newer samples. The network was trained using the popular
Torch framework.

Misc. Implementation Details: The multi-view and
single-view adjustment pipelines have been implemented
using Ceres Solver [26]. The optimization problem was
solved using a dense Schur linear system solver with a Jacobi
preconditioner.
A. Localization Accuracy

To analyze the efficiency of object localization, we evalu-
ate the average translation error of the car (in meters) from
the ground truth location. This evaluation is presented in
Table I.

We test 3 flavors of the proposed system. Single-View
refers to the case where each image is independently pro-
cessed, and no temporal coherence is exploited. In the Multi-
View (Incremental) version, we add temporal consistency
constraints between a newly added frame and the most
recent optimized estimate. In the Multi-View (Batch) mode of
operation, we assume the entire sequence is available prior
to optimization.

As one would expect, the multi-view approach outper-
forms the other modes of execution, as it has access to
more information that can be used to over-constrain the
objective function. However, the single-view error is also
quite low, except for far-off objects. The multi-view approach
is not quite suitable for real-time execution since it assumes
all data is available before performing the optimization.
Interestingly, the incremental version, which is real-time,
performs marginally better than the multi-view (batch) mode
for far-off objects.

One recent work that attempts monocular reconstruction of
moving vehicles is by Falak et al [5]. However, localization
accuracy in [5] is evaluated only for vehicles with depths
ranging from 4 m to 25 m. Moreover, they require two
perpendicular planar surfaces of the car to be visible in order
for their moving plane homography framework to produce
inter-frame motion estimates. A comparison is provided in
Table II.

Clearly, the proposed approach provides precise localiza-
tion estimates in metric scale and outperforms prior art by
a significant margin. Interestingly, none of the cars have a
localization error of more than 2 m. Moreover, the proposed
approach runs real-time 2, whereas the other approaches
incur processing times of about 15 minutes per frame [25],
[5].

Table III shows the advantage of the proposed system
as compared to approaches that treat cars as 3D bounding
boxes. Specifically, the proposed system recovers 3D object

2Assuming that a GPU is available to run the keypoint network



properties (height, width, length) more accurately, taking
advantage of the shape priors. Since the approaches [15], [23]
are real-time, we compare it with the incremental version
of the proposed system. Although our batch mode recovers
more accurate 3D properties, such a comparison would be
unfair.

To further illustrate the capability of our system to localize
across a long sequence using only sparse matches, we plot
the depth estimates of an object over 241 frames in Fig
5. Initially, when the object is very far-off (80m), the
system incurs significant estimation errors. However, it soon
stabilizes and tracks the object accurately until the end.

Fig 8 shows a few samples of the output obtained from
the proposed localization system.

Fig. 5. Localization accuracy over a long sequence (241 frames).

B. Keypoint localization (2D)
Herein, we evaluate the accuracy of our 2D keypoint

localization network. To evaluate our network, we use the
standard PCK (Percentage of Correct Keypoints) and APK
(Average Precision of Keypionts) metrics, used in [27], [12],
[14]. In our analysis, we use a very tight threshold of 2 px
to determine whether or not our keypoint estimate is correct.
We compare the accuracy obtained for the car class with the
approaches [18], [12].

Approach PCK (%) (α = 0.1)
Tulsiani et al [12] 81.3

Zia et al [18] 81.8
Ours (hourglass, CRF-style loss) 93.4

TABLE IV
EVALUATION OF THE PROPOSED KEYPOINT LOCALIZATION NETWORK

ARCHITECTURE.

Table IV shows the keypoint localization accuracy ob-
tained by the proposed network architecture. The results in-
dicate a significant performance boost in the task of keypoint
localization, which also helps in boosting the performance of
the 3D object localization pipeline.

Generalization Performance
To evaluate the generalization capability of various key-

point localization architecture, we evaluate the PCK measure

Fig. 6. Per-keypoint PCK comparison for VpsKps [12] and the proposed
keypoint network architecture. Parts 1-4 correspond to the wheels, 5-
6 correspond to the headlights, 7-8 correspond to the taillights, 9-10
correspond to the side-view mirrors, and 11-14 correspond to four corners
of the rooftop.

Fig. 7. Correlation coefficient between the keypoint confidence score output
by the proposed CNN and the ground-truth visibility (0− 1) vector. On an
average, the correlation coefficient is 0.72, which indicates that the network
has learnt visibility information.

on a keypoint-annotated dataset comprising of about 19000
cars from a subset of the KITTI [16] object dataset, made
available by [7]. Fig 6 compares the per-keypoint PCKs
of the keypoint network described in [12] compared to
the proposed architecture. Both the networks were trained
entirely on the same train split of PASCAL3D [21]. However,
the proposed architecture performs significantly better than
[12] for most of the keypoints.

Correlation with Visibility

The proposed CNN architecture, in addition to localizing
keypoints, provides a confidence score for each estimate
which determines the likelihood of that keypoint being
visible. To analyze this empirically, we compute the Pearson
Correlation Coefficients for each keypoint confidence to its
ground truth visibility (binary) vector. This is shown in Fig
7. The correlation is quite high (0.72 on an average), which
indicates that the CNN has learnt the notion of visibility.

Qualitative Results

Finally, a few qualitative results of keypoint localization
are shown in Fig 4.

V. CONCLUSIONS

In this work, we presented an approach for real-time
monocular object localization. Although the problem is ill-
posed, we demonstrated that prior knowledge about object
shapes helps in accurate localization. We proposed a novel
method of incorporating this prior knowledge into an object
localization system by means of shape priors. Further, we
proposed a keypoint localization architecture that improves
the state-of-the-art for car keypoint localization by more
than 12%. The proposed shape characterization naturally
falls into a Bundle Adjustment-like optimization framework
which can be efficiently solved using only a sparse set of
discriminative feature matches. Qualitative and quantitative
analysis was performed on multiple sequences from the
challenging KITTI [16] tracking benchmark.
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