
Most deep architectures for visual odometry estimation rely 
on large amounts of precisely labeled data.

Such labels are extremely expensive to obtain.
We propose an unsupervised paradigm for deep visual 

odometry learning.
Using a noisy teacher, which could be a standard VO pipeline 

and a geometric consistency loss term, we can train accurate 
models for visual odometry without requiring any ground-
truth labels.

Core Contribution

Longer timescale estimate

=

We leverage the observation that compounded sequences of 
transformations over short timescales should be equivalent to a single 
transformation independently computed over longer timescales. This 
allows us to create Composite Transformation Constraints (CTCs) that 

can be used as supervisory signals for learning visual odometry.

Composition

=
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Network Architecture

End-to-end architecture: An example of Composite Transformation Constraints (CTCs) being 
applied to 4 successive input images. During training, two estimates are generated from the 

inputs: one for a sequential pairwise constraint and one for a CTC constraint.
At test time, each frame is only fed into the network once to receive the output pose from 

the SE(3) layer.
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CTCNet: Brief Description
 We use noisy odometry estimates from a conventional 

VO system, such as ORB-SLAM to bootstrap our system.
 CTCs are gradually fed to the network in a curriculum 

that presents shorter timescale constraints to the 
network first, and gradually increases the window size.

 The convolutional encoder and the recurrent CTC blocks 
are trained sequentially.

 We use dropout at the last linear layer, to aid in 
uncertainty characterization.

Results

Trajectory estimates on a sequence from 
the 7-Scenes test split. Top (left to right): 

Output trajectories are shown in red, 
against ground-truth trajectories in blue. 
Bottom: se(3) estimates of relative poses. 
Each of the 6 se(3) coordinates is plotted 
independently. On this sequence, CTCNet 

performs better than the same LSTM 
architecture trained using ground-truth 

pose labels.

se(3) error plot:A close-up 
view of the rotational and 

translational errors. We 
compare three quantities: 

ground-truth, an LSTM 
model trained using 

ground-truth labels, and 
CTCNet

Generalization to unseen data: CTCNet 
was evaluated on a sequence that was in 
stark contrast to the kind of sequences it
had been presented with during training. 
Estimated 3D trajectory plotted against 

ground-truth.
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Loss terms used for 
training CTCNet

1st International Workshop on Deep Learning for Visual SLAM, CVPR 2018

mailto:giyer@andrew.cmu.edu
mailto:krrish94@gmail.com
mailto:gunshigupta9@gmail.com

	Slide 1

