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* We propose an unsupervised paradigm for deep visual
odometry learning.

* Using a noisy teacher, which could be a standard VO pipeline
and a geometric consistency loss term, we can train accurate
models for visual odometry without requiring any ground-
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Code, models, and more ... * We use noisy odometry estimates from a conventional Generalization to unseen data: CTCNet
We leverage the observation that compounded sequences of diver@andrew.cmu.edu VO system, such as ORB-SLAM to bootstrap our system. was evaluated on a sequence that was in

stark contrast to the kind of sequences it

had been presented with during training.

Estimated 3D trajectory plotted against
ground-truth.
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<rrish94@amail.com * CTCs are gradually fed to the network in a curriculum
dinshiglntao@amailcom that presents shorter timescale constraints to the
network First, and gradually increases the window size.
* The convolutional encoder and the recurrent CTC blocks
are trained sequentially.
~* We use dropout at the last linear layer, to aid in
~uncertainty characterization.

transformations over short timescales should be equivalent to a single
transformation independently computed over longer timescales. This
allows us to create Composite Transformation Constraints (CTCs) that
can be used as supervisory signals for learning visual odometry.
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